
Advantage VISION:Builder
Advantage VISION:Two for

OS/390

™ ®

™ ™

®

Getting Started Guide
14.0
BUGTO140.PDF/D92-009-014

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for the end
user's informational purposes only and is subject to change or withdrawal by Computer Associates International, Inc. ("CA")
at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without the
prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright laws of
the United States and international treaties.
Notwithstanding the foregoing, the user may print a reasonable number of copies of this documentation for its own internal
use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only authorized employees,
consultants, or agents of the user who are bound by the confidentiality provisions of the license for the software of the user
will have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and effect.
Should the license terminate for any reason, it shall be the user's responsibility to return to CA the reproduced copies or to
certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation "as is" without warranty of any kind, including
without limitation, any implied warranties of merchantability, fitness for a particular purpose or noninfringement. In no
event will CA be liable to the end user or any third party for any loss or damage, direct or indirect, from the use of this
documentation, including without limitation, lost profits, business interruption, goodwill, or lost data, even if CA is
expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's applicable
license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS
Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

© 2002 Computer Associates International, Inc. (CA).

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents
Chapter 1: Introduction
Features... 1-2

Efficient Database Access... 1-2
Wide Variety of Report Output Formats.. 1-2
Migrating Data... 1-2
Meta Data Repository System ... 1-2
Verifying the Data ... 1-3
Handling Complex Applications Easily .. 1-3
A Computer Associates Solution .. 1-3

Benefits.. 1-3
VISION:Builder Requirements.. 1-4
Environment .. 1-4

IBM Operating Systems Supported.. 1-4
Available Interfaces... 1-4

SMP/E Installation Specifications .. 1-4
CA LMP Licensing Specifications... 1-5
Documentation .. 1-6

Installing Online Documentation and the Acrobat Reader .. 1-11
Viewing Online Documentation ... 1-11

Educational and Professional Services... 1-11
Contacting Total License Care (TLC).. 1-12
Contacting Computer Associates.. 1-13
Contents iii

Chapter 2: Enhancements and Modifications
General Enhancements... 2-3

ASL Run Control Statements... 2-3
ASL Report Statements... 2-8
ASL EXTRACT Statement.. 2-11
Additional ASL Procedure Statements .. 2-12
Long Field Names ... 2-13
Remove Limit of 10 Extracted Data Files (Subfiles) ... 2-13
Extracted Data Files Following the Sort... 2-14

Customer-Requested Enhancements.. 2-15
PL/I-Like Varchar Output ... 2-15
Delimited Data Output Enhancements.. 2-16
HTML Primary Document Name Change .. 2-18
HFS Output for HTML Report .. 2-18

Chapter 3: Installing VISION:Builder
Installation Tasks ... 3-1

Chapter 4: VISION:Builder Quick Reference
Specialized Report Formats ... 4-1
Reporting from Special Data Files .. 4-2
Data Field and Record Processing .. 4-3
File Manipulation .. 4-4
Definition Processing.. 4-6
COBOL and VISION:Builder... 4-7
Table Processing .. 4-7
Performance Tuning.. 4-7

Chapter 5: COBOL Quick Start
Flow Diagram .. 5-2
Utility Execution.. 5-3
Using CA-Panvalet and CA-Librarian COBOL Copybooks... 5-4

CA-Panvalet Interface... 5-4
CA-Librarian Interface ... 5-5

Control Statements.. 5-7
Coding Rules.. 5-7
FILEGEN Control Statement ... 5-7
SEGMENT Control Statement... 5-9
$COBOL and $ECOBOL Control Statements.. 5-11
iv Getting Started Guide

Conversion Rules .. 5-11
Generated COMLIB File Definition.. 5-11
COMLIB Field Name Generation ... 5-12
Unsupported COBOL Specifications.. 5-13

Chapter 6: DB2 Quick Start
Flow Diagram .. 6-2
Utility Execution.. 6-2
Control Statements.. 6-4

Coding Rules.. 6-5
DB2CNTL Control Statement.. 6-5
FILEGEN Control Statement ... 6-6
SEGMENT Control Statement... 6-8
NEWPAGE Control Statement .. 6-9

Conversion Rules .. 6-9
Generated COMLIB File Definition.. 6-9
COMLIB Field Name Generation ... 6-10
Generating COMLIB Field Information... 6-10

Chapter 7: VISION:Results Quick Start
Flow Diagram .. 7-1
Utility Execution.. 7-3

DD Statement Overrides .. 7-5
Operational Characteristics ... 7-5

Supported Statement Types... 7-5
Converted File Definition .. 7-6
Member Naming Conventions.. 7-7
SYSPRINT Listing ... 7-7
COPYP and COPYL Support... 7-7

Installing the VISION:Results Quick Start Routines (Optional) .. 7-8
Link Edit CA-Librarian Support ... 7-8
Link Edit CA-Panvalet Support .. 7-9

Messages... 7-9
Return Codes ... 7-11
Contents v

Chapter 8: VISION:Inquiry Quick Start
Flow Diagram .. 8-2
Utility Execution.. 8-3
FILEGEN Control Statement ... 8-4

Coding Rules.. 8-5
Syntax.. 8-5

Conversion Rules .. 8-6
Generated File Definition... 8-6
Field Name Generation .. 8-7

Messages... 8-7
Return Codes ... 8-9

Appendix A: ASL Examples
Code ... A-1
Reports ... A-2
Listing .. A-3

Index
vi Getting Started Guide

Chapter
1 I
ntroduction
Note: Unless otherwise indicated, this book describes both VISION:Builder® and

VISION:Two™. Throughout this book, the symbol ❹ is used to designate that the
feature or function being described only applies to VISION:Builder 4000 model
series, and not VISION:Two.

Advantage VISION:Builder (hereafter referred to as VISION:Builder) is a software
system that can be used to design, implement, and execute data processing
applications. Novice users can be productive within a few hours, yet
VISION:Builder produces complex applications efficiently. An experienced user
can build an application in VISION:Builder in less than half the time it would take
for a similar application in COBOL or other third-generation languages.

The philosophy in using VISION:Builder is to:

■ Conceptualize how VISION:Builder functions during input, processing, and
output

■ Design applications that use as many of the automatic functions of
VISION:Builder as possible

VISION:Builder provides extensive facilities for the creation and maintenance of
files and databases, as well as report generation. VISION:Builder processes
virtually any data source and database format available on an IBM® host (for
example, flat files, IMS, and DB2) without requiring the programmer to be familiar
with these formats.

The VISION:Builder system is made up of the following main components:

■ VISION:Builder Engine

■ VISION:Workbench for DOS

■ VISION:Workbench for ISPF

■ COMLIB Library Utilities.

See the VISION:Builder Reference Guide for more information about these
components.
Introduction 1–1

Features
Features
This section describes important features and benefits of VISION:Builder.

Efficient Database Access
With VISION:Builder, you can generate virtually an unlimited number of reports
in a single pass of multiple databases. Other products require a separate pass of
each database for each report, which significantly increase the read/write cycles
and runtime.

VISION:Builder is engineered to access all IBM enterprise server databases and
files automatically, simultaneously, and concurrently for maximum efficiency.

VISION:Builder frees application developers from the complexities of various
database management systems, providing a logical view of data separate from the
physical organization. Users preparing their applications are not required to code
any calls to DB2® , IMS/DB, or VSAM database management systems. Once data
definitions are prepared and referenced in the program, VISION:Builder
automatically manages all the input and output operations for the various
databases. This gives you the staffing flexibility you need for application
management projects.

Wide Variety of Report Output Formats
With VISION:Builder, you can view reports in a wide variety of formats. In
addition to the traditional report formats, VISION:Builder automatically outputs
report contents in HTML, TXT, or CSV formats.

Migrating Data
VISION:Builder can select data from existing operational data files and external
data sources, and transform, summarize and enhance the data prior to loading into
a data warehouse. VISION:Builder can build the initial warehouse and be used on
a continuing basis for refreshing the warehouse with updated data.

Meta Data Repository System
The meta data repository system (COMLIB Library Utilities) lets you create file
definitions, table definitions, and transaction update definitions once, and then
store them in the VISION:Builder library where they can be used for populating
and updating data warehouses or by any other program. The library lets you store
and reuse VISION:Builder code, so that commonly used procedures can be
employed over and over again in different applications.
1–2 Getting Started Guide

Benefits
Verifying the Data
VISION:Builder offers complete transaction processing, as well as extensive
editing and automated error-checking for file, database, and data warehouse
updates. You can dynamically modify transactions before applying them as
updates and test or modify the resulting record. VISION:Builder automatically
creates an audit trail.

Handling Complex Applications Easily
VISION:Builder is designed for development organizations with the most
challenging enterprise server application requirements. Many VISION:Builder
applications in use today involve databases with millions of records and tables
with millions of rows.

VISION:Builder helps both novice and experienced developers easily solve
complex problems by automating more than 2,000 development functions.
Powerful programs that meet a wide variety of objectives can be easily and quickly
generated using the defaults and automatic functions of VISION:Builder.

A Computer Associates Solution
Computer Associates provides solutions for global access to corporate data. Its
products and services satisfy the data access, applications portfolio management,
and desktop integration needs of cross-industry users, regardless of business
function.

Benefits
VISION:Builder provides you with the following benefits:

■ Automates database conversions necessary for populating and maintaining
data warehouses.

■ Provides for more efficient use of corporate data with concurrent access to
multiple databases.

■ Simplifies migration by automating database conversions.

■ Minimizes data handling, optimizes runtime, and reduces storage overhead by
taking advantage of summarized data files.

■ Automates more than 2,000 development functions to simplify development
and database management for even the most complex applications.

■ Reduces enterprise server overhead by making database access more efficient.

■ Provides an efficient and easy-to-use utility to organize corporate data for
application management projects.
Introduction 1–3

VISION:Builder Requirements
VISION:Builder Requirements
The following hardware and platforms are required for VISION:Builder:

■ All IBM and IBM-compatible enterprise servers — OS/390®, MVS/ESA™,
VSE/SP/ESA, and VM/XA/ESA.

■ Supports VSAM with options for supporting IMS, DB2, and ISV database
managers concurrently.

■ Optional PC and ISPF program development through VISION:Workbench™.

Environment
This section describes the packaging and environmental considerations for
VISION:Builder Release 14.0.

IBM Operating Systems Supported
Separate versions of VISION:Builder exist to support the various IBM operating
systems in use at an installation. The OS/390 version supports all OS/390 and
z/OS™ operating systems. The VSE version supports VSE/ESA™. The CMS
version supports VM/ESA®.

Available Interfaces
You can use the following interfaces with VISION:Builder:

■ VISION:Workbench for DOS

■ VISION:Workbench for ISPF

■ DB2 SQL/DS Interface

■ VISION:Builder IMS Interface

■ Generalized Data Base Interface

■ CALL other programs

SMP/E Installation Specifications
The packaging of VISION:Builder Release 14.0 has been changed to conform to the
IBM SMP/E standards. SMP/E modification control statements (MCS) along with
the supporting JCL for the RECEIVE, APPLY, and ACCEPT processes have been
developed to install the elements of the product. The Indirect File method is used
to reference the unloaded product data sets during the install process. A REXX
program has been written to assist you in tailoring the SMP/E install job streams
1–4 Getting Started Guide

CA LMP Licensing Specifications
(JCL and control statements) to conform to the local shop's standards and
conventions. Local product tailoring procedures (M4PARAMS, and so on) are still
performed in a manner similar to that used in previous releases of VISION:Builder.
However, problem fixes or post-delivery enhancements to the product are now
packaged to conform to SMP/E standards and processes for PTFs and/or APARs.

The Function Modifier Identification (FMID) for VISION:Builder Release 14.0 is
CCVC140. The FMID for VISION:Two Release 14.0 is CCVPE00.

CA LMP Licensing Specifications
To verify proper authorization to use the product at a customer site,
VISION:Builder Release 14.0 uses the CA License Management Program (LMP).
The VISION:Builder product family is offered as two products in the marketplace,
namely VISION:Builder and VISION:Two. VISION:Builder is the full function
product, while VISION:Two is a subset of VISION:Builder that restricts the ability
to create new databases and to update existing databases using transaction files.

In addition to the two products noted above, both VISION:Builder and
VISION:Two provide the following three database interfaces as optional features:

■ DB2 Database Interface

■ IMS Database Interface

■ Generalized Database Interface

Thus, each customer will use from one to four product codes depending on their
licensed features. There will be one product code for the base system,
VISION:Builder or VISION:Two, and one code for each licensed optional feature.
Introduction 1–5

Documentation
The assigned product codes are as follows:

VISION:Builder Release 14.0 has been modified to invoke LMP to verify the
authorized use of either the VISION:Builder or VISION:Two products. This
verification occurs during product initialization. If the CAIRIM service is not
operational, the product terminates with an appropriate error message.

Additionally, VISION:Builder Release 14.0 invokes LMP to verify the authorized
use of the base product or any of the three optional database interfaces. If an
attempt is made to employ the base product or any of the optional interfaces
within an application without proper authorization, an appropriate error message
is issued but execution of the product continues.

Documentation
The documentation is delivered on a compact disc (CD). The books are in Adobe
Acrobat Portable Document Format (PDF) and are designed for you to read online
using the Acrobat Reader (also included on the CD).

Each online book contains a table of contents, index, and underlined colored
hypertext links. To go directly to the book, chapter, section, or topic being
referenced, click the hypertext link.

SM VISION:Builder

SZ VISION:Builder Interface for GDBI

S4 VISION:Builder Interface for IMS

S6 VISION:Builder Interface for DB2

S8 VISION:Two

S9 VISION:Two Interface for GDBI

TF VISION:Two Interface for IMS

TG VISION:Two Interface for DB2
1–6 Getting Started Guide

Documentation
The following books are available for VISION:Builder/VISION:Two for OS/390
Release 14.0 on the documentation compact disc:

Name Description

VISION:Builder for
OS/390 Getting
Started Guide

Contains fundamental descriptions of VISION:Builder
and how to use it, along with a list of enhancements.

Lists common applications and tells you where to go for
detailed information. Provides you with a road map to
the documentation.

Contains information specific to the use and operation of
the COBOL, DB2®, VISION:Inquiry, and VISION:Results
Quick Start utility programs that generate skeletal
VISION:Builder file definitions from COBOL data
definitions, DB2 catalog information, and
VISION:Inquiry and VISION:Results data definitions,
respectively.

VISION:Builder for
OS/390 Installation
and Support Guide

The environment-specific Installation and Support Guide
describes how to install VISION:Builder.

VISION:Builder
Reference Guide

Describes all of the concepts necessary to understand how
VISION:Builder works and how applications can be
developed using VISION:Builder. It covers both basic and
advanced applications.

Also contains information specific to the use of and
operation of the toolkit routines delivered with
VISION:Builder. These toolkit routines may be used
within a VISION:Builder application to perform functions
not readily available using native VISION:Builder
programming operations.

Also provides information specific to the use and
operation of a routine which allows user programs
written in other languages to access tables stored in a
Common Library.

VISION:Builder
Reference Summary

(previously named
VISION:Builder
Specifications
Manual)

Contains all valid fixed format syntax specifications for
VISION:Builder statements.
Introduction 1–7

Documentation
VISION:Builder
ASL Reference
Guide

Contains information specific to the use and operation of
ASL. (This book assumes that you are familiar with
VISION:Builder.)

Also describes the conversion from fixed form syntax to
Advanced Syntax Language (ASL).

VISION:Workbench
for DOS Reference
Guide

Contains information specific to the operation and use of
VISION:Workbench for DOS. It is designed to give you a
basic understanding of the features, capabilities, and flow
of VISION:Workbench for DOS.

VISION:Workbench
for ISPF Reference
Guide

Contains a brief introduction to VISION:Workbench for
ISPF, an illustrated application, and an in-depth
discussion of the panels in VISION:Workbench for ISPF.

VISION:Builder for
OS/390
Environment Guide

Describes, in separate books, detailed information for the
use of VISION:Builder and the COMLIB system under the
OS/390 and z/OS environment.

VISION:Builder
Messages and Codes

Lists VISION:Builder messages and codes and gives
detailed explanations.

Also assists programmers in identifying and resolving
problems that may occur during the execution of
VISION:Builder.

Name Description
1–8 Getting Started Guide

Documentation
The following books used to be delivered with VISION:Builder and are now
incorporated into other books:

Old Name Description

Information
Now Contained
in this Book

VISION:Builder
Toolkit Reference
Manual

Contains information specific to the
use of and operation of the toolkit
routines delivered with
VISION:Builder. These toolkit
routines may be used within a
VISION:Builder application to
perform functions not readily
available using native
VISION:Builder programming
operations.

Also provides information specific to
the use and operation of a routine
which allows user programs written
in other languages to access tables
stored in a Common Library.

VISION:Builder
Reference Guide

VISION:Builder
New Release
Planning Guide

Contains the general and technical
information about the new releases of
VISION:Builder and
VISION:Workbench for DOS.

This document complements other
VISION:Builder and
VISION:Workbench for DOS manuals
by providing a summary of the
changes and enhancements for the
new releases and information
pertinent to migrating to the new
releases.

VISION:Builder
for OS/390 Getting
Started Guide

VISION:Builder
Specifications
Manual

Contains all valid fixed format syntax
specifications for VISION:Builder
statements.

VISION:Builder
Reference
Summary

VISION:Builder
Conversion
Manual

Describes the conversion from fixed
form syntax to ASL and
VISION:Workbench for DOS window
entries.

VISION:Builder
ASL Reference
Guide
Introduction 1–9

Documentation
The following books only apply to customers who have the GDBI feature. These
books are available only by special request and are not part of the CDROM
documentation kit:

VISION:Builder
Problem
Determination
Guide

Assists programmers in identifying
and resolving problems that may
occur during the execution of
VISION:Builder.

VISION:Builder
Messages and
Codes

COMLIB System
Messages

Lists message text and detailed
explanations for COMLIB system
messages.

VISION:Builder
Messages and
Codes

Name Description

GDBI
Programming
Guide

Covers the concepts and operation of the Generalized Data
Base Interface which enables you to access and process data
from virtually any Database Management System without
having to be concerned about where the data is stored or in
what format it is stored.

Using GDBI
with ADABAS

Aids you in the design and implementation of
VISION:Builder applications which access Software AG's
Adaptable Data Base System (ADABAS) files using the GDBI
option of VISION:Builder.

Using GDBI
with SUPRA

Aids you in the design and implementation of
VISION:Builder applications which access Cincom's SUPRA
databases using the GDBI option of VISION:Builder.

Using GDBI
with IDMS

Aids you in the design and implementation of
VISION:Builder applications which access Computer
Associate's Integrated Database Management System (IDMS)
databases using the GDBI option of VISION:Builder.

Old Name Description

Information
Now Contained
in this Book
1–10 Getting Started Guide

Educational and Professional Services
Installing Online Documentation and the Acrobat Reader
You can install the online documentation on your local hard drive or on a network
server. Or, you can access the documentation directly from the compact disc.

If you do not have Acrobat Reader installed, you can install it from the compact
disc.

To install the online documentation, the Acrobat Reader, or both:

1. Close all application programs, including screen-saver software.
2. Insert the compact disc into the CD-ROM drive.

3. Click the Start menu and select Run.

4. In the Run dialog box, type: D:\Books\Setup.exe (where D: is the CD-ROM
drive) and click OK.

5. You can select the option to install the online documentation or the Acrobat
Reader.

6. Follow the instructions.

Viewing Online Documentation
Regardless of the location of the online documentation (on a hard drive or compact
disc), you can view the online documentation using the following methods:

■ Point to the directory on the hard drive or CD-ROM drive and double-click the
PDF file.

■ Click the Start menu, point to Programs, point to Advantage VISION_Builder
VISION_Two 14.0 OS, and click the document title.

Educational and Professional Services
You can become proficient in using VISION:Builder by reading the VISION:Builder
Reference Guide and writing several programs. However, if you would like more
extensive training, Computer Associates offers two courses designed to assist you
in getting the most from your investment in VISION:Builder:

■ VISION:Builder Basic Concepts

This five-day course, which includes hands-on workshops, provides an
introduction to the basic features and capabilities of VISION:Builder. From
simple applications to more sophisticated techniques, this course provides an
in-depth understanding of the VISION:Builder language and special features.

■ VISION:Builder Advanced Concepts

This five-day course provides an introduction to VISION:Builder’s advanced
features and capabilities. Simple to advanced applications are covered in each
area of interest. You can add DB2 and IMS™ interfaces by request.
Introduction 1–11

Contacting Total License Care (TLC)
Classes are held at various regional locations, or you can make arrangements to
have the class taught at your site.

In addition to educational services, Computer Associates offers consulting and
programming services to assist you in exploiting the full capabilities and power of
VISION:Builder. See Contacting Computer Associates for information about
contacting Computer Associates Professional Services.

Contacting Total License Care (TLC)
TLC is available Monday-Friday 7 AM - 9 PM Eastern time in North America and
7 AM - 7 PM United Kingdom time. Additionally, 24-hour callback service is
available for after hours support. Contact TLC for all your licensing requirements.

Be prepared to provide your site ID for product activation.
1–12 Getting Started Guide

Contacting Computer Associates
To activate your product (ask for a license key or validation), use one of the
following:

Contacting Computer Associates
For technical assistance with this product, contact Computer Associates Technical
Support on the Internet at esupport.ca.com. Technical support is available 24 hours
a day, 7 days a week.

Location Phone Email

North America 800-388-6720 (toll free)
631-342-5069

help@licensedesk.cai.com

Europe 00800-1050-1050 euro.tlc@ca.com

If your company or local phone service does not provide international access,
please call your local Computer Associates office and have them route you to
the above number.

Australia: 1-800-224-852

New Zealand: 0-800-224-852

Asia Pacific: 800-224-852

Brazil: 55-11-5503-6100

Japan: Not available JPNTLC@ca.com
Introduction 1–13

Contacting Computer Associates
1–14 Getting Started Guide

Chapter
2 E
nhancements and Modifications
This chapter describes the changes for VISION:Builder Release 14.0.

In VISION:Builder Release 14.0, the implementation of the ASL (Advanced Syntax
Language) feature has been completed so that you can now code an entire
application in ASL. Therefore, you no longer need to code portions of your
application using the traditional fixed-form-syntax language specifications.
Previously, ASL only supported the procedural portion of the VISION:Builder
language specifications. New ASL statements are now provided for Run Control,
Reporting, Extracted Data Files (Subfiles), and the small subset of Procedure
statements that previously required the use of fixed-form-syntax.

Both the existing ASL statements and all new ASL statements now allow the use
of long field names (up to 30 characters) in VISION:Builder Release 14.0.
Previously, ASL statements as well as the traditional fixed-form-syntax
specifications restricted field names to a maximum of eight characters.
Fixed-form-syntax statements continue to restrict field names to a maximum of
eight characters.

In addition to the ASL extensions, the previous restriction of only allowing a
maximum of 10 extracted data files to be created within a single application has
been lifted in VISION:Builder Release 14.0. This enhancement significantly
improves the power of VISION:Builder for data extraction tasks. Because each
“extracted data file” can be used to directly populate a DB2 table, this
enhancement significantly strengthens the power of VISION:Builder for data
warehouse construction applications.

This section describes the enhancements for VISION:Builder Release 14.0.

The following list summarizes the major functional enhancements in
VISION:Builder Release 14.0:

■ Extend ASL to support the Run Control statement specifications

– SQL Clause on FILE statements

– SEGMENT and WHERE clause on FILE statements

– SEGMENT and SSA clause on FILE statements

■ Extend ASL to support Report statement specifications
Enhancements and Modifications 2–1

■ Extend ASL to support the EXTRACT statement in procedures

■ Extend ASL for procedures to eliminate the need for any fixed-form-syntax
statements

■ Long field names (up to 30 characters)

■ Remove the current restriction of only 10 extracted data files (subfiles) per
application (allow up to 138 extracted pre-sort data files)

■ Allow extracted data files to be produced following the sort

■ Conform to the IBM SMP/E product packaging conventions

■ Conform to the CA LMP license verification process

The option for developing a fully ASL coded application in VISION:Builder
Release 14.0 makes it easier for you to assimilate, understand, and prepare
applications. The following sections provide the detail functional specifications for
each of the major new functional enhancements.

As in previous releases of VISION:Builder, use the following conventions to
specify the syntax of each command or function:

■ Brackets [] indicate an optional keyword or parameter.

■ Braces { } indicate a choice of entry. Unless a default parameter is indicated by
an underscored entry, you must choose one of the entries.

■ Required parameters do not have brackets or braces surrounding them.

■ Items separated by a vertical bar (|) represent alternative items. Select only one
of the items.

■ Items separated by a plus sign (+) represent alternative items. Select as many
as appropriate.

■ An ellipsis (…) indicates that you can use a progressive sequence of the type
immediately preceding the ellipsis. For example: name1, name2, …

■ Bold uppercase type indicates the characters to be entered. Enter such items
exactly as illustrated. You can use an abbreviation if it is indicated.

■ Italic lowercase type indicates parameters to be supplied by the user.

■ Underscored type indicates a default option. If you omit the parameter, the
underscored value is assumed.

■ Separate commands, keywords, and operands by blanks.

■ Enter punctuation exactly as shown (parentheses, colons, and so on).

■ Continue a command on a new line by ending the line with a comma.

■ Comments are entered following a semi-colon.
2–2 Getting Started Guide

General Enhancements
General Enhancements

ASL Run Control Statements
Previously, all Run Control statements of VISION:Builder (those specifying the
basic control parameters and file usage for a VISION:Builder application) had to
be coded in the traditional fixed-form-syntax. VISION:Builder Release 14.0 now
accepts new ASL statements that you can use to specify basic control parameters
and the file usage for an application. The Run Control statements and their syntax
are as follows:

CONTROL [NAME run-name],
[DELIMITER 'x'],
[{SCANONLY | SAMPLE | MAPDECODE}],
[{TERM | CONTINUE}],
[SORT {INTERNAL | EXTERNAL | NONE}, [SUMMARIZE],
[{NOLIST | NOSOURCE | LISTGEN}],
[[AMODE {31 | 24}],
[ABEND],
[GRANDSUM],
[CORDONLY],
[GETMAIN nnnK],
[SORTSIZE nnnK],
[REPTSIZE nnnK],
[FREESIZE nnnK],
[DB2 sub-system-id plan-name],
[SQLID sql-authorization-id],
[EXPLAIN nnn],
[{SYSDATE mmddyy | SYSDATE4 yyyymmdd}],
[DECMSGS {YES | NO}],
[PROMSGS {YES | NO}],
[RPTMSGS {YES | NO}]

FILE MASTER {INPUT | UPDATE_IN_PLACE},
[{NAME definition-name | SQL "sql-select-statement"}],
[ACCESS {SEQUENTIAL | DIRECT | PHYSICAL}],
[KEYS {UNIQUE | EQUAL | NONE}],
[STARTKEY key-value],
[ENDKEY key-value],
[KEYNAME field-name ...],
[MOSAIC],
[CHKORDER],
[ONE_BUFFER],
[{SEGMENT segment-name WHERE "sql-where-clause" ...|
SEGMENT segment-name SSA "pre-selection-ssa" ... }]

FILE MASTER OUTPUT,
[NAME] definition-name

FILE MASTER DUMMY,
[NAME] definition-name

The following rules apply to FILE MASTER statements:

■ Both FILE MASTER INPUT and FILE MASTER OUTPUT may be present in the
same application.

■ FILE MASTER OUTPUT is not allowed when FILE MASTER UPDATE is
present.
Enhancements and Modifications 2–3

General Enhancements
■ FILE MASTER DUMMY is not allowed when any other FILE MASTER
statements are present.

■ When FILE MASTER DUMMY is present, FILE TRAN (see below) must also be
present.

The following additional keywords are common to all of the above FILE
statements except FILE MASTER DUMMY:

FILE CORDn [{NAME definition-name | SQL "sql-select-statement"}](n = 1 to 9)
[MOSAIC],
[CHKORDER],
[ARRAY],
[{SEGMENT segment-name WHERE "sql-where-clause" ... |
SEGMENT segment-name SSA "pre-selection-ssa" ... }]

[DIRECT BY q.fldname] (indexed direct - ICF)

[STANDARD], (standard coordination)
[{ALLRECS | MATCHONLY}],
[KEYNAME field-name ...]

[CHAIN TO qual], (chained coordination)
[KEYNAME field-name ...]

[USER_READ], (user read)
[GENERIC field-name]

FILE TRAN [NAME definition-name],
[GROUPS group-name ...],
[CHKORDER]

FILE REJECT

FILE AUDIT

FILE SUBFn [NAME] subfile-name, (n = 0 to 9)
[TABLE authid.tablename {CREATE | DELETE | INSERT | DROP}],
[TABLESPACE tablespace-name],
[DATABASE database-name],
[DROP_DELETED_SEGMENTS],
[AUTODEF]

FILE REPORT

FILE REPn [NAME] report-file-name (n = 2 to 9)

[{PASSWORD password | AUTHID authorization-id}]
[IO_PLUGIN module-name]
[DDNAME ddname]
2–4 Getting Started Guide

General Enhancements
CHECKPOINT [FILE ddname],
[COUNT number],
[TIME number {MINUTES | SECONDS}],
[EOV ddname],
[OPERATOR],
[PREFIX id-prefix],
[COMMITONLY],
[ALTERNATING]

CATALOG {SAVE [GROUP group-name] [REQUEST request-name ...] |
INSERT REQUEST request-name INTO group-name [AFTER request-name] |
DELETE [GROUP group-name] [REQUEST request-name ...] |
REPLACE REQUEST request-name ... |
DUMP {ALL | ITEMS name ... } |
LIST}

TRACK [NAME] item-name,
[GENERIC],
[TYPE {FILE | ARRAY | TABLE | TRAN | REQUEST | REQGROUP}],
[FILENAME file-name],
[{EXPIRE mmddyy | RETAIN days}],
[USERID userid]

OVERRIDE [DDNAME] old-ddname WITH new-ddname

MULTILIB {OFF | ORDER m4libn ...}

OWNCODE [MODULE] module-name,
HOOKS hook-number ...

LISTCNTL [ALT_LIST {YES | NO}],
[FILESUM {YES | NO}],
[INDEF {YES | NO}],
[INGLOSS {YES | NO}],
[INREQ {YES | NO}],
[CATREQ {YES | NO}],
[MAPREQ {YES | NO}],
[SQLSTAT {YES | NO}],
[MOSAICSTAT {YES | NO}]

DOCUMENT [CONVMSGS],
[XREF],
[EXECTRACE],
[MAXLINES nnnK]

LISTLIB NAMES {ALL | ARRAY | FILE | GROUP | TABLE | VIEW}

LISTLIB GLOSSARY {ARRAY | FILE | GROUP | TABLE | VIEW | WITHIN_VIEW},
{ALL | ITEMS name ...}

RETRIEVE {ARRAY | FILE | GROUP | REQUEST | TABLE | VIEW | EOF},

ARRAY [QUALIFIER] qual-char,
NAME definition-name,
[OVER_DEFINES qual-char]

WORK [AREA] number,
NAME definition-name

(number = 01 to 99)

LINKAGE [AREA] number,
NAME definition-name

(number = 01 to 99)

ROUTE {[REPORTS] report-name ... | ALL},
[KEYVALUE 'data-value'],
TO destination-names ...,
[DEFER]

COLLATE {[REPORTS] report-name ... [KEYLENGTH length] |
ALL KEYLENGTH length}
Enhancements and Modifications 2–5

General Enhancements
{ALL | ITEMS name ...},
[NEWNAME name]

No FILE statements may be present when you use the LISTLIB or RETRIEVE
command.

DEBUG [CLEAR], (internal debugging controls)
[DUMP],
[EXIT],
[LONGNAMES],

COPY [DDNAME] ddname[(member-name)] [FIXED]

You can include the COPY statement anywhere in the run-control section. The
statements in the referenced file are copied into the source code input stream and
processed in an identical manner as if the statements had been in-stream.

If you specify the FIXED keyword on the COPY statement, the statements are
assumed to be VISION:Builder fixed-form-syntax statements and are processed as
such. Copied members from a COPY without the FIXED keyword may in turn
contain COPY statements.

A COPY statement with the FIXED keyword signals the end of the Run Control
section of the application. This means that none of the above statements may
appear following a COPY statement with the FIXED keyword.

Typically, a COPY statement with the FIXED keyword would either include
definitions from a Definition Library (created using the Workbench for ISPF) or
fixed-form-syntax statements for requests.

SQL Clause on FILE Statement
In VISION:Builder Release 14.0, if the MASTER or CORDn file is a DB2 file,
VISION:Builder accepts an SQL clause on the FILE statements for these files. The
SQL clause must contain a complete DB2 SELECT statement that is used to access
the DB2 table rows for the related file. When the DB2 clause is present, no
pre-existing file definition for the related file is needed. VISION:Builder constructs
a file-definition automatically on-the-fly from the information obtained from the
DB2 catalog for the SELECT statement.
2–6 Getting Started Guide

General Enhancements
There are no restrictions on the scope of the SELECT clause included with the FILE
statement; any legal DB2 SELECT statement is allowed. You cannot use the
following FILE statement keywords when the SQL clause is present: OUTPUT,
STARTKEY, ENDKEY, SEGMENT, and WHERE. You can use the KEYNAME
parameter on the FILE statement to identify the key field(s) in those cases where
the DB2 Catalog does identify the key columns in the table. The following is an
example of a VISION:Builder application using the SQL clause:

SEGMENT and WHERE Clause on FILE Statement
Optionally, you can use the SEGMENT and WHERE clause on a FILE MASTER
INPUT, FILE MASTER UPDATE, or FILE CORDn statement to qualify the SQL
SELECT statement generated by VISION:Builder for a DB2 database. This lets you
qualify the table rows that will be retrieved and optimize the access to DB2
databases. The function of the SEGMENT and WHERE clause is identical to the
fixed-form-syntax WH statements.

The following is an example of SEGMENT and WHERE clause usage for a DB2
database:

FILE MASTER INPUT, NAME DEPT_EMP,
SEGMENT EMPLOYEE, WHERE "BIRTH_DATE < '1970-01-01' AND SALARY > 50000"

Use of the SEGMENT and WHERE clause on a FILE statement is mutually
exclusive with the use of the SQL clause.

SEGMENT and SSA Clause on FILE Statement
You can optionally use the SEGMENT and SSA clause on the FILE MASTER
INPUT, FILE MASTER UPDATE, or FILE CORDn statement to qualify the DL/I
GetUnique or GetNext calls for segments of an IMS database. When
VISION:Builder constructs the required parameter list to perform the appropriate
DL/I Get calls, any SSA clause qualifications are appended to the parameters. This

; Sample Builder Application Reading Data using an SQL SELECT Statement
;
CONTROL DB2 D61A INM4CALL
;
FILE MASTER INPUT, KEYNAME A.DEPT_NUMBER B.EMP_NUMBER,

SQL "SELECT A.DEPT_NUMBER, A.DEPT_NAME, B.EMP_NUMBER ",
"B.LAST_NAME, B.FIRST_NAME, B.MIDDLE_INITIAL ",
"FROM DSN8610.DEPT A, DSN8610.EMP B ",
"WHERE A.DEPT_NUMBER = B.WORK_DEPT ",
"ORDER BY A.DEPT_NUMBER, B.EMP_NUMBER"

;
FILE REPORT ;Indicates that a Report File is needed
;
MAIN: PROC

REPORT DEPT_NUMBER, DEPT_NAME, EMP_NUMBER, LASTNAME,
FIRSTNAME, MIDDLE_INITIAL

TITLE 'EMPLOYEE LIST BY DEPARTMENT'
GROUP BY DEPT_NUMBER DEPT_NAME, SUBTITLE
COUNT EMP_NUMBER BY DEPT_NUMBER

END REPORT
END PROC
;
; End of Sample Application
Enhancements and Modifications 2–7

General Enhancements
lets you qualify the IMS database segments that will be retrieved and optimize the
number of DL/I calls required. The function of the SEGMENT and SSA clause is
identical to the fixed-form-syntax Pre-Selection Requests.

The following is an example of a SEGMENT and SSA clause usage for an IMS
database:

FILE MASTER INPUT, NAME CUSTOMER,
SEGMENT CUSTOMER, SSA "STATE = 'CA' OR STATE = 'AZ'",
SEGMENT ORDER, SSA "AMOUNT > 1000"

ASL Report Statements
Additional ASL statements are provided to allow the specifications of reports. The
REPORT statement, along with its subordinate statements, is known as a Report
Block. You can include as many Report Blocks as you want within an ASL
procedure. The first statement of a Report Block must be a REPORT statement
with an optional label specifying the name of the Report Block. The label on the
REPORT statements is required only when you specify ROUTE and COLLATE
statements for the report. A Report Block ends when an "END REPORT" statement
is encountered. The Report Block statements and their syntax are as follows:

report-name: REPORT [COLUMNS] {q.fldname | report-function} ...,
[SUMMARY_ONLY],
[GRANDSUMS],
[EMPTY_FIELD {INCLUDE | EXCLUDE}],
[SELECTION_CONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[FILE report-file-name]
{TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO ‘text’]

TITLE [LINE] 'text' ...

ORDER [BY] q.fldname ... [DESC q.fldname ...]

GROUP [AT LEVEL number] [BY] q.fldname ...
[SUBTITLE [NEWPAGE]],
[LABEL]

FORMAT [HEIGHT number],
[WIDTH number],
[DATEPOS {UL | UR | UM | LL | LR | LM | NO}],
[PAGEPOS {UL | UR | UM | LL | LR | LM | NO}],
[TITLEPOS {TOP | BOTTOM}],
[LABELS {SPACE | NOSPACE | SUPPRESS}],
[HEADINGS {YES | NO | NAME}],
[HEADPOS {ABOVE | BELOW}],
[DATEFMT {DATE | TODAY | TODAYX | ISDATE | JULIAN | JULIANX |

mmddyy}],
[LINES number],
[BORDER [YES | NO | ‘x’}],
[STARTPAGE {number | PAGE}],
[MAXPAGES number],
[LINESPERPAGE number]’
[DETAILSPACING number],
[INCOMPLETESUM char],
[NODATA {SKELETON | NOREPORT }],
[SUBTITLE {REPEAT| NOREPEAT| NEWPAGE}],
[SUMMARYLABELS {SPACE | NOSPACE | SUPPRESS}],
[LINENUMS {NONE | LEFT | RIGHT | BOTH}],
[IMAGES number] [IMGTITLE {LOGPAGE | PHYPAGE | NEWPAGE}]
2–8 Getting Started Guide

General Enhancements
Built-in Report Functions
In addition to the above statements, six built-in functions are provided for use in
the REPORT statement to simplify the coding required. You can specify the
following built-in functions as a COLUMNS operand of the REPORT statement in
place of a simple qualified name:

PF([FIELD] q.fldname [START] start-position [[LENGTH] partial-length])

TOTAL([ITEM] q.fldname BY q.fldname)

COUNT([ITEM] q.fldname BY q.fldname)

MAX([ITEM] q.fldname BY q.fldname)

MIN([ITEM] q.fldname BY q.fldname)

AVG([ITEM] q.fldname BY q.fldname)

When you use these built-in functions, a column for the field-name is included in
the report. If the function is a summary function (TOTAL, COUNT, MAX, MIN,
AVG), the summary for that field is included, as well. When you use any of these
functions (except for the PF function) as a COLUMNS operand on the REPORT
statement, the explicit TOTAL, COUNT, MAX, MIN, or AVG statements described
earlier are not necessary.

[METHOD {STD_LIST | ALT_LIST | CSV | TAB | HTML | PLAIN_TEXT |
RAW_DATA }],

[STYLE number],
[DDNAME ddname],
[SUMFILE ddname],
[AUTODEF]

ITEM [COLUMN] q.fldname ...
[SPACES number],
[PICTURE P'pattern'],
[ENDLINE],
[NONPRINT],
[VWIDTH],
[NOWRAP],
[SPLITOK],
[CSVEDIT {QUOTE | TRUNCATE [DECIMALS number]}]

TOTAL [ITEM] q.fldname ... {BY q.fldname | AT LEVEL number}

CUM [ITEM] q.fldname ... {BY q.fldname | AT LEVEL number}

COUNT [ITEM] q.fldname ... {BY q.fldname | AT LEVEL number}

MAX [ITEM] q.fldname ... {BY q.fldname | AT LEVEL number}

MIN [ITEM] q.fldname ... {BY q.fldname | AT LEVEL number}

AVG [ITEM] q.fldname ... {BY q.fldname | AT LEVEL number}

PCT [ITEM] q.fldname ... OF q.fldname {BY q.fldname | AT LEVEL number}

RATIO [ITEM] q.fldname ... TO q.fldname {BY q.fldname | AT LEVEL number}

PREFACE [LINE] 'text' ...

XREP [LINE] 'text' ... (text may include any MARKXREP control commands)

END [REPORT]
Enhancements and Modifications 2–9

General Enhancements
Sectional Reporting Extensions
You can use the following statements within a REPORT block to specify section
layout and content for the page-title, column-heading, or summary sections of a
report. The specifications for a section must begin with a SECTION statement and
end with an END statement. You can include only one specification for each
section type within a REPORT block. If no SECTION statements are provided, the
default layout and content is used for the report.

Semantics:
■ Level = 1 to 9, or G[RAND] except for DATA statement where level = 0 to 9 or

G[RAND]

■ DATA statement(s) must be followed by a LINE statement; multiple DATA
statements allowed prior to a LINE statement

■ sumftn = TOT[AL], CUM, COUNT, MAX, MIN, AVG, PCT, RAT[IO]

General Report Semantics
The Report Block statements are translated to the appropriate ER, En, Rn, Pn, Tn,
and Fn fixed-form-syntax statements.

COLUMNS on the REPORT statement may be augmented by columns from the
ORDER, GROUP, ITEM, TOTAL, CUM, COUNT, MAX, MIN, AVG, PCT, and
RATIO statements. In other words, if a column name appears both on the REPORT
statement and on any of the other statements, the parameters are combined to form
the complete specification for that entry on the generated Rn statement. If a
column is referenced only on an ORDER or GROUP statement, the field is
considered as NONPRINT. You can use an ITEM statement for the same field
without the NONPRINT keyword to override this default NONPRINT
designation.

SECTION PAGE_TITLE or SECTION COLUMN_HEADING

LINE {'text' | LITERAL('text', num-times) | q.fldname | COL(col-num) |
SPACES(num-spaces)}...

SKIP num-lines LINES

END [SECTION]

SECTION SUMMARY

COMPUTE STEMPnn = operand operator operand [PIC P'picture'] [DECIMALS number],
[ROUNDED] AT LEVEL level

DATA {'text' | LITERAL('text', num-times) | q.fldname | sumftn(q.fldname) |
STEMPnn |

COL(col-num) | SPACES(num-spaces)}... AT LEVEL level

LINE [{'text' | LIT[ERAL]('text', num-times) | q.fldname | sumftn(q.fldname) |
STEMPnn,

COL(col-num) | SPACES(num-spaces)}...] [AT LEVEL level]

SKIP num-lines LINES [AT LEVEL level]

END [SECTION]
2–10 Getting Started Guide

General Enhancements
ASL EXTRACT Statement
A new ASL EXTRACT statement is provided to output an extracted data file
(subfile). This statement must be contained within an ASL procedure. There are
four variations of the EXTRACT statement. The first variation requires a
corresponding "FILE SUBFn" statement, while the remaining ones do not.

The syntax of the EXTRACT statement requiring a corresponding "FILE SUBFn"
statement is:

This syntax of the EXTRACT statement used to create a subfile as either a
sequential file or a VSAM file without a corresponding "FILE SUBFn" statement is:

The syntax of the EXTRACT statement used to create a subfile as an IMS database
without a corresponding "FILE SUBFn" statement is:

EXTRACT FILE subfile-name ,
{[ITEMS] {q.fldname | pf-function} ...} | ENTIRE qual-char},
[KEYS q.fldname ...],
[VARCHARMAX NOPREFIX q.fldname ...],
[VARCHARMAX WITHPREFIX q.fldname ...],
[SELECTION_CONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[RECFM {FIXED | VARIABLE | UNDEFINED | KEY_VSAM | ENTRY_VSAM |

DLI | HDAM | DB2 | PACKED}],
[BLKSIZE number],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO ‘text’]

EXTRACT DDNAME ddname,
{[ITEMS] {q.fldname | pf-function} ...} | ENTIRE qual-char},
[KEYS q.fldname ...],
[VARCHARMAX NOPREFIX q.fldname ...],
[VARCHARMAX WITHPREFIX q.fldname ...],
[SELECTION_CONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[RECFM {FIXED | VARIABLE | UNDEFINED | KEY_VSAM | ENTRY_VSAM |

PACKED}],
[BLKSIZE number],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO ‘text’]

EXTRACT DBDNAME dbdname,
ENTIRE qual-char,
[{DLI | HDAM}],
[SELECTION_CONTROL {YES | NO}],
[MAXITEMS number],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO ‘text’]
Enhancements and Modifications 2–11

General Enhancements
The syntax of the EXTRACT statement used to create a subfile as a DB2 table
without a corresponding "FILE SUBFn" statement is:

Additional ASL Procedure Statements
New PROC, INCLUDE, and COPY statements are introduced in the procedure
section, allowing you to code a procedure entirely in ASL. The PROC statement
eliminates the previous requirement that required a fixed-form-syntax ER
statement to precede ASL procedure statements. The PROC statement begins a
procedure block that must be terminated by an END statement. The syntax of the
PROC statements is as follows:

The INCLUDE statement eliminates the previous requirement to code a
fixed-form-syntax CR statement to include a cataloged procedure, request, or
request group. The object to be "included" must have been previously cataloged
into the Common Library. The syntax of the INCLUDE statement is as follows:

INCLUDE [ITEM] item-name [DATEFMT {DATE | TODAY | ISDATE | JULIAN | mmddyy}],
[INFO 'text']

You can use the COPY statement to copy additional ASL statements into the
procedure section of an application just as if they were included in the input
stream. If the copied member contains fixed-form-syntax statements, the COPY
statement must not be within the scope of a procedure block and you must specify
the FIXED keyword. Otherwise, the copy statement may occur anywhere in the
input stream. Copied members from a COPY without the FIXED keyword may in
turn contain COPY statements. The syntax of the COPY statement for procedures
is as follows:

COPY [DDNAME] ddname[(member-name)] [FIXED]

EXTRACT TABLE "authid.tablename",
{CREATE | DELETE | INSERT | DROP},
[TABLESPACE tablespace-name],
[DATABASE database-name],
ITEMS {q.fldname | pf-function}} ... },
[KEYS q.fldname ...],
[SELECTION_CONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[AUTODEF],
[DEFNAME defname],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO ‘text’]

proc-name: PROC [TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |
TRAN1 | TRAN2 | TRANM | TRAN3 | TRAN4 |
EOF | EOFPLUS}],

[REINIT_TEMPS].
[SELECTION_CONTROL {YES | NO}],
[MAXITEMS number],
[INFO 'text'],
[PARALLEL_LOOPING]
2–12 Getting Started Guide

General Enhancements
Use the END statement to terminate a procedure block that began with a PROC
statement.

END [PROC]

You can use all of the ASL procedural statements available in previous releases of
VISION:Builder within a procedure block.

Also, using the fixed-form-syntax ER statement followed by the ##PROC and
##PEND statements to bracket ASL procedural statements will continue to be
supported. When you use this convention, you cannot use the PROC, INCLUDE,
and COPY statements within the scope of the ##PROC/##PEND group.

Long Field Names
Traditionally, data element names in VISION:Builder language statements are still
limited to a maximum of eight characters. This has been, and will continue to be, a
a restriction imposed by the fixed-form-syntax statements. Beginning with Release
12.0 of VISION:Builder, users could define data elements with both a short
(8-character) and a long (30-character) name. The DB2 and COBOL Quick Start
utilities could also be used to create data definitions with data element names
longer than 8 characters. However, the only place that the long names could be
used was in a VISION:Inform query.

In VISION:Builder Release 14.0, statements coded with the ASL syntax can now
use data element names that are longer than eight characters. This makes the
language statements more readable and eliminates the need to use short alias
names for data definitions imported from DB2 and COBOL that contained names
longer than eight characters.

Remove Limit of 10 Extracted Data Files (Subfiles)
In previous releases of VISION:Builder, the number of subfiles in an application
was limited to 10. In VISION:Builder Release 14.0, 138 subfiles are allowed (the
basic 10 subfiles plus an additional 128 extended subfiles.). The previous subfile
functionality specified using the "FILE SUBFn file-name …" statements in
combination with the "EXTRACT FILE file-name …" statements is still supported.
In addition, three alternate forms of the EXTRACT statement (namely EXTRACT
DDNAME, EXTRACT DBDNAME, and EXTRACT TABLE) are now accepted in
VISION:Builder Release 14.0. These alternate forms of the EXTRACT statements
do not require a corresponding FILE statement and, as such, are not restricted by
the previous limit of 10 "FILE SUBFn file-name …" statements.

The new fixed-syntax specifications for the En Report Handling entry (cols. 41-42)
are as follows:
Enhancements and Modifications 2–13

General Enhancements
No RF statement for the subfile is required when the above Report Handling codes
are used. The En statement Subfile Format entry (col. 56) determines the type of
subfile created and the meaning of the DTF/DDname or File Name entry (cols.
44-51). The additional En statement specifications for the DTF/DDname or File
Entry (cols. 44-51) are as follows:

Extended Subfile Usage of File Name Entry (Cols. 44-51)
■ Enter a DBDNAME when the Subfile Format entry is D or H.

■ Leave blank when the Subfile Format entry is S and the Report Handling Entry
is DO.

■ Enter a file definition name for the created definition when the Subfile Format
entry is S and the Report Handling entry is DD.

■ Enter a DDname when the Subfile Format is any code other than D, H, or S.

When a Report Handling entry of DD or DO is used in conjunction with a Subfile
Format of S, a new Wn statement is required. The layout of the Wn statement and
the specifications rules are identical to the RT statement, with the exception that
the File Name entry (cols. 11-18) of the Wn statement is not a required entry and
should be left blank.

Extracted Data Files Following the Sort
Previously, extracted data files were only created during the file-processing phase
of a VISION:Builder application before any sorting took place. Thus, the extracted
files were always in the same sequence as the input data. VISION:Builder
Release 14.0 supports the ability to produce extracted data files from the report
phase following the sort. This way, the records in the extracted data files are
ordered just as report data is ordered. These post-sort extracted data files are
specified using the REPORT statement that includes a "FORMAT … METHOD
RAW_DATA …" statement within the Report Block. Post-sort extracted data file
records always use the variable-length record (RECFM V) convention.

The new fixed-syntax specifications for the En Report Handling entry (cols. 41-42)
are as follows:

Entry Result

DD A pre-sort extended subfile and a subfile file definition is created. An
RF statement with a C in the CORD entry (col. 53) is required when this
En statement specification is used.

DO A pre-sort extended subfile is created.
2–14 Getting Started Guide

Customer-Requested Enhancements
No RF statement for the subfile is required when the above Report Handling codes
are used. The En statement Subfile Format entry (col. 56) must be left blank, and
the DTF/DDname or File Entry (cols. 44-51) must contain a DDname to which the
file will be written. This will always output as variable length record file (RECFM
V).

Customer-Requested Enhancements
The following enhancements have been implemented in VISION:Builder
Release 14.0 in response to customer initiated requests. These enhancements
include the requests identified by DARs 10605358, 10605928, 10606035, and
10606090.

PL/I-Like Varchar Output
Previously, V-type fields output through a subfile were always formatted
according to the VISION:Builder conventions. Because this format was not
compatible with PL/I varying length character field formats, the only application
that could read these subfiles was VISION:Builder itself. This enhancement allows
the application developer to specify that VISION:Builder is to output V-type fields
as either PL/I-like varchar fields or as long character fields so that
non-VISION:Builder applications can read the files.

The new fixed-syntax specifications for the Rn statement Control entry (col. 29) are
as follows:

Entry Result

RD A post-sort extended subfile and a subfile file definition is created. An
RF statement with a C in the CORD entry (col. 53) is required when this
En statement specification is used.

RO A post-sort extended subfile is created.

Entry Result

X The V-type field will be output as a PL/I compatible varchar field.
That is, the field will be output with a 2-byte prefix containing the
current length of the field followed by the significant characters in the
field (represented by the current length) padded with blanks up to the
maximum length of the field.

Y The V-type field will be output as a long character field containing the
significant characters in the field (represented by the current length)
padded with blanks up to the maximum length of the field.
Enhancements and Modifications 2–15

Customer-Requested Enhancements
The ASL examples below are the equivalent way of specifying the fixed-syntax
specifications:

Delimited Data Output Enhancements
Previously, when the CSV delimited data Report Method was specified,
character-type fields were quoted whenever the field contained a comma (,)
character. Sometimes, it was necessary to quote a field even when it did not
contain an imbedded comma. For example, a character field containing all
numeric characters but with leading zeros was assumed to be a numeric field
rather than a character field when imported by Microsoft Excel unless the field was
quoted. Excel discarded the leading zeros in the field such that the meaning and
accurateness of the data might have been affected.

Additionally, when either the CSV or Tab delimited data Report Methods were
specified, all trailing zeros for numeric fields with decimal places greater than one
would be output, even if the zeros did not add any significance to the data value.
If a field specification had many decimal places but most of the fields did not
contain many significant digits following the decimal point, the size of the file
became larger than necessary because of the cumulative number of non-significant
zeros that may have occurred.

This enhancement addresses both of these issues and lets the application
developer specify that a character-type field should always be quoted or that
non-significant trailing zeros from a numeric-type field should be truncated. New
Rn statement specifications are provided to specify new controls for delimited data
output.

The new fixed-syntax specifications for the Rn statement Modifier entry (col. 37)
are as follows:

EXTRACT ITEMS …,
VARCHARMAX WITHPREFIX q.fldname ;X in Control entry (col. 29)

;(PL/I compatible varchar field)
EXTRACT ITEMS …,

VARCHARMAX NOPREFIX q.fldname ;Y in Control entry (col. 29)
;(Long character field)

Entry Result

Q Always enclose the character field within quotes (") regardless of
whether it contains an imbedded comma (,) or not.

T Truncate trailing zeros to the right of the decimal point of the numeric
field up to either the decimal point (default), or up to the number of
decimal places specified in the Percent/Ratio Field Decimal Places
(col. 41) entry.
2–16 Getting Started Guide

Customer-Requested Enhancements
The new fixed-syntax specifications for the Rn statement Percent/Ratio Field
Decimal Places entry (col. 41) are as follows:

Prior to VISION:Builder Release 14.0, the Modifier entry (col. 37) was only used for
Graph Reports.

The ASL examples below are the equivalent way of specifying the fixed-syntax
specifications:

The following table illustrates the use of these specifications:

Entry Result

Blank Percent or Ratio Field:

■ Ratio - 3 decimal places in the result.

■ Percent - 2 decimal places in the result.

Delimited data output field with T in Modifier entry (col. 37):

■ Truncate trailing zeros up to but not including the decimal point.

 0-9 Percent or Ratio Field:

■ 0-9 decimal places in the result.

Delimited data output field with T in Modifier entry (col. 37)

■ Truncate trailing zeros up to the number of decimal places
specified.

ITEM q.fldname CSVEDIT QUOTE ; Always quote this field
ITEM q.fldname CSVEDIT TRUNCATE ; Truncate all trailing 0's
ITEM q.fldname CSVEDIT TRUNCATE DECIMALS 2 ; Truncate to 2 places

Specification
Data
Type Original Value Output Value

None Char 00010
West Hills, CA

00010
"West Hills, CA"

None Numeric 123.05000
789.00000

123.05000
789.00000
Enhancements and Modifications 2–17

Customer-Requested Enhancements
HTML Primary Document Name Change
Previously, the primary object name for an HTML "report" was identified as
MAIN. When there were many BDYnnnnn files or members associated with a
"report", you may have had to scroll down into the file or member name list to
locate the MAIN object. In VISION:Builder Release 14.0, the primary name has
been changed to $MAIN so that it always appears first in the list of files and
members. This makes it easier for you to launch the browser for an HTML
"report".

HFS Output for HTML Report
Previously, VISION:Builder required that HTML report output be placed into a
Partitioned Data Set (PDS). A PDS is unique to MVS and could be accessed directly
by WebSphere running on the OS/390 platform and served to a browser.
However, when the HTML objects needed to be transferred to another platform
(typically NT, LINUX, or UNIX) from which the browser would then access the
"report", the .html suffix had to be added to each member name in the PDS to
derive the target platform file name. Depending upon the file transfer tools used,
this may have required manual intervention for each file transferred.

VISION:Builder Release 14.0 lets you output the HTML report into a Hierarchical
File System (HFS) directory. HFS files have the same naming conventions as NT,
LINUX, or UNIX files, and VISION:Builder Release 14.0 automatically appends
the .html suffix to the object names whenever the destination file system is HFS
rather than MVS. Then, if the files must be transferred to another platform, no
renaming is required. The specification of HFS output is now a function of the JCL
DD statement corresponding to the DDNAME specified for the HTML output. If
the DD statement contains a PATHNAME= parameter, HFS output is performed.
If the DD statement specifies a DSN= parameter, PDS output is performed.

CSVEDIT QUOTE Char 00010
West Hills, CA

"00010"
"West Hills, CA"

CSVEDIT
TRUNCATE

Numeric 123.05000
789.00000

123.05
789.

CSVEDIT
TRUNCATE,

DECIMALS 2

Numeric 123.05000
789.00000

123.05
789.00

Specification
Data
Type Original Value Output Value
2–18 Getting Started Guide

Chapter
3 I
nstalling VISION:Builder
The VISION:Builder system is distributed on a cartridge tape, and contains sixteen
files. The files contain:

1. JCL to copy the tape files 2-16 to disk.
2. CLIST members to run the install dialog.

3. ISPF panels for the install dialog.

4. ISPF messages for the install dialog.

5. ISPF JCL skeletons for the install dialog.

6. JCL members tailored by the install dialog.

7. VISION:Builder load modules.

8. Source statement and control members for customizing VISION:Builder.

9. COMLIB component load modules.

10. Workbench for ISPF component load modules.

11. Workbench for ISPF CLIST members.

12. Workbench for ISPF Panel members.

13. Workbench for ISPF Messages members.

14. Workbench for ISPF Skeleton members.

15. SAS/C® Runtime load modules.

16. Sample VISION:Builder applications.

Installation Tasks
Starting with release 14.0 of the VISION:Builder (and VISION:Two), the
Installation and Maintenance will be managed by and under the control of the
OS/390 SMP/E Facility as provided by IBM. This process differs significantly
from previous releases (13.8 and prior) of VISION:Builder.

Additionally, the VISION:Builder Software System will use the CA License
Management Program (LMP), which provides a standardized and automated
approach to the tracking of licensed software.
Installing VISION:Builder 3–1

Installation Tasks
You must perform the following basic tasks to install VISION:Builder:

1. Copy System Tape File 1 to a PDS
2. Copy System Tape Files 2 through 16 to Disk Data Sets

3. Complete the IP Dialog (create JCL Control Statements for the installation)

4. Allocate Data Sets

5. Define the CSI and the Global, Distribution, and Target Zones

6. RECEIVE the MCS and SYSMODS into the Global Zone

7. RECEIVE the PTF and APAR SYSMODS into the Global Zone

8. APPLY the VISION:Builder Elements (SYSMODS) to the Target Libraries

9. APPLY the VISION:Builder PTF SYSMODS to the Target Libraries

10. Run the Installation Verification Procedure using the Target Load Library.

11. ACCEPT the VISION:Builder Elements (SYSMODS) to the Distribution
Libraries

12. ACCEPT the VISION:Builder PTF SYSMODS to the Distribution Libraries

13. APPLY Customizing APARs

The following tasks are optional. These tasks provide for customization and
tailoring of the VISION:Builder Software based on specific site requirements and
utilization criteria.

14. Customize the Parameter Modules

15. Install the DB2 Database Access Module MARKSQL

16. Install the PAL File Definitions and Requests

17. Relink Static Own Code Integration

18. Set Up for Use with the TSO Command Processor

19. Copy VISION:Builder Message Modules to LPA

20. Install VISION:Workbench for DOS

21. Set up VISION:Workbench for ISPF Requirements

22. Set up Quick Start Utility

For more information about installing VISION:Builder Release 14.0, see the
VISION:Builder for OS/390 Installation Guide.
3–2 Getting Started Guide

Chapter
4 V
ISION:Builder Quick Reference
This chapter lists some commonly used VISION:Builder applications which are
described in the VISION:Builder books contained on this compact disc. This
section describes where you would find information about those tasks and
proposes several alternate solutions.

Use the online search function to locate the sections referenced in the following
tables.

Specialized Report Formats

Task Book Chapter Section

Report on preprinted
forms.

VISION:Builder
Reference Guide

Chapter 14 Formatted
Reporting

Display data across
the page instead of
columnar.

VISION:Builder
Reference Guide

Chapter 13 Reporting from
Arrays

Generate labels.

VISION:Builder
Reference Guide

Chapter 9 Report Page
Layout

Chapter 14 Formatted
Reporting
VISION:Builder Quick Reference 4–1

Reporting from Special Data Files
Reporting from Special Data Files

Generate reports of
non-standard sizes.

VISION:Builder
Reference Guide

Chapter 14 Formatted
Sectional
Reporting

Formatted
Reporting

Dynamic Report
Line Modification

Display message on
bottom of every page.

VISION:Builder
Reference Guide

Chapter 14 Formatted
Sectional
Reporting

Task Book Chapter Section

Task Book Chapter Section

Summarize file data
and change report
information based on
the use of summary
data.

VISION:Builder
Reference Guide

Chapter 14 Formatted
Sectional
Reporting

Report from multiple
files.

VISION:Builder
Reference Guide

Chapter 6 Coordinated Files

Report from multiple
files when
coordinating field is
not contiguous.

VISION:Builder
Reference Guide

Chapter 6 Coordinated Files

Chapter 15 The Transaction

Processing Step❹

Report failed

transactions.❹
VISION:Builder
Reference Guide

Chapter 15 Transaction
Record Rejection
and Type 4
Procedure
Processing Flow
4–2 Getting Started Guide

Data Field and Record Processing
Data Field and Record Processing

Report from
header/trailer file.

VISION:Builder
Reference Guide

Chapter 6 Coordinated Files

Chapter 10 Transaction File
and Master File

Record Flows❹

Chapter 14 Formatted
Reporting

Report collating and
routing to remote
printers.

VISION:Builder
Reference Guide

Chapter 17 Report Manager

Task Book Chapter Section

Task Book Chapter Section

Sample Application. VISION:Builder
Reference Guide

Chapter 5 Sample
Application
Source Listing

Add fields to an

existing file.❹ VISION:Builder
Reference Guide

Chapter 5 Application
Cycle Overview

Chapter 10 Transaction File
and Master File
Record Flows

Clear out invalid data
from numeric fields. VISION:Builder

Reference Guide

Chapter 4 Invalid Fields

Chapter 10 Transaction

Definitions❹

Perform calculations
with time data.

VISION:Builder
Reference Guide

Chapter 4 Time Data
Conversions and
Arithmetic
Operations

Change the same field
in every record on the

file. VISION:Builder
Reference Guide

Chapter 6 Master File
Processing
Options

Chapter 10 Transaction File
and Master File
Record Flows

B

VISION:Builder Quick Reference 4–3

File Manipulation
File Manipulation

Procedurally update
fields.

VISION:Builder
Reference Guide

Chapter 6 Master File
Processing
Options

Remove selected

records from a file.❹
VISION:Builder
ASL Reference
Guide

Appendix C Flags

VISION:Builder
Reference Guide

Chapter 7 Deleted Master
File Records

Chapter 10 Transaction File
and Master File
Record Flows

VISION:Builder
Specifications
Guide

Chapter 3 Flags

Task Book Chapter Section

Task Book Chapter Section

Read files with
different key lengths.

VISION:Builder
Reference Guide

Chapter 6 Coordinated
Files

Process only a subset of
the file. VISION:Builder

Reference Guide

Chapter 5 Application
Cycle Overview

Chapter 16 IMS™ Processing

VISION:Builder
Specifications
Guide

Chapter 2 RC Statement

Compare keys in
multiple files to
determine keys on one
file and not another.

VISION:Builder
Reference Guide

Chapter 6 Coordinated
Files

Sequential
Coordination

Convert a file from one
database manager to
another (VSAM to
DB2).

VISION:Builder
Reference Guide

Chapter 2 Discipline of
VISION:Builder

Chapter 3 Define a
Relational File

Chapter 7 Subfiles
4–4 Getting Started Guide

File Manipulation
Audit trail when

updating.❹

VISION:Builder
Reference Guide

Chapter 10 Transaction File
and Sequential
Master File
Record Flows

Chapter 15 Transaction
Record Rejection
and Type 4
Procedure
Processing Flow

Read IMS and DB2 files
in same run.

VISION:Builder
Reference Guide

Chapter 3 Concept of
Structured Files

Define an IMS
File

Define a
Relational File

Chapter 6 Coordinated
Files

Control reading of a
file. VISION:Builder

Reference Guide

Chapter 6 Coordinated
Files

Chapter 13 Controlling
Array Looping

Generate a test file from
a production file.

VISION:Builder
Reference Guide

Chapter 7 Subfiles

Stop processing on
demand.

VISION:Builder
Reference Guide

Chapter 5 Flag Fields

Chapter 8 Branching to
Control Looping

Chapter 10 Transaction File
and Master File

Record Flows❹

Process table databases.

VISION:Builder
Reference Guide

Chapter 3 Define a
Relational File

Chapter 15 Relational
Updating
Considerations

Restrict users view of
file data.

VISION:Builder
Reference Guide

Chapter 3 Using a Logical
Record

Task Book Chapter Section
VISION:Builder Quick Reference 4–5

Definition Processing
Definition Processing

Check program for
efficiency.

VISION:Builder
Reference Guide

Chapter 20 Using PAL to
Help Maintain a
Program

VISION:Builder
Environment
Guide

Feed parameter to
VISION:Builder
program (EXEC linkage
or user-read).

VISION:Builder
Reference Guide

Chapter 6 User
Coordination

Chapter 18 entire chapter

VISION:Builder
Environment
Guide

Chapter 6 entire chapter

Task Book Chapter Section

Task Book Chapter Section

Use a different
definition - just for this
run.

VISION:Builder
Reference Guide

Chapter 3 Catalog the
File Definition
in the
Common
Library

Chapter 19 Processing
with Multiple
Common
Libraries

How to use multiple
COMLIBs.

VISION:Builder
Reference Guide

Chapter 19 Instream File
Definitions

VISION:Builder
Environment
Guide

Chapter 13 entire chapter
4–6 Getting Started Guide

COBOL and VISION:Builder
COBOL and VISION:Builder

Table Processing

Performance Tuning

Task Book Chapter Section

Access COBOL file with
OCCURS
DEPENDING ON
followed by more
fields.

VISION:Builder
Reference Guide

Chapter 4 Variable
Length Fields

Chapter 18 entire chapter

Call a COBOL routine
from VISION:Builder.

VISION:Builder
Reference Guide

Chapter 18 entire chapter

Task Book Chapter Section

Convert codes to
descriptions
automatically.

VISION:Builder
Reference Guide

Chapter 12 Defining
Tables

Automatic
Table Lookup

Task Book Chapter Section

Optimize your
program.

VISION:Builder
Reference Guide

Chapter 20 entire chapter
VISION:Builder Quick Reference 4–7

Performance Tuning
4–8 Getting Started Guide

Chapter
5 C
OBOL Quick Start
Note: This chapter is applicable to OS/390 only.

COBOL quick start is a batch utility that generates a skeletal COMLIB file
definition from an existing COBOL file definition. Once a skeletal COMLIB file
definition has been created, any additional file information that is required can be
specified using the VISION:Workbench for DOS, VISION:Workbench for ISPF, or
a text editor.

The COBOL quick start utility can also run from VISION:Workbench for ISPF. The
IMPORT Option points you to a menu for selecting the quick start utility you want
to run. The subsequent panels prompt you for the information needed to run the
utility. Once the information is gathered, the utility is run immediately and the
output displayed for you to browse.

Note: File definitions are stored to and retrieved from a common library
(COMLIB) when needed at processing time. Unless specifically stated otherwise,
the term COMLIB refers to this common file definition.

The COBOL quick start Utility can retrieve COBOL copybooks from OS/390® data
sets, CA-Panvalet® libraries, and CA-Librarian® libraries. Most COMLIB file
definition types are supported by COBOL quick start.
COBOL Quick Start 5–1

Flow Diagram
Flow Diagram

Note: If a CA-Panvalet or CA-Librarian copybook library is used, a PANDD1
(CA-Panvalet) or MASTER (CA-Librarian) DD statement is required. See Using
CA-Panvalet and CA-Librarian COBOL Copybooks on page 5-4 for more
information.

As shown in Figure 5-1, COBOL quick start uses the following input data sets:

COBOL quick start produces two output files:

Figure 5-1 COBOL Quick Start Flow Diagram

■ STEPLIB Specifies the COMLIB load library.

■ SYSCOPY Specifies an OS/390 COBOL copybook library.

■ SYSIN Provides the appropriate COBOL quick start control
statements. Instream COBOL field definitions may also be
specified here.

■ SYSPRINT Contains a report on the file definition generation process
which includes a listing of the COBOL statements that were
processed.

■ SYS004 Contains the generated COMLIB file definition source
statements.
5–2 Getting Started Guide

Utility Execution
Utility Execution
COBOL quick start is a batch utility.The Job Control Language (JCL) statements
required to execute this utility are shown in Figure 5-2. The JCL contains an
instream procedure, followed by JCL statements to execute the procedure. Notice
that this JCL uses sample SYSIN data. You can use this sample COBOL data to see
exactly how COBOL quick start works.

At a minimum, you must make the following changes before submitting this JCL:

■ Supply a JOB Card.

■ Supply values for the procedure variables detailed in the following table.

■ Provide a DD statement override for COBOLQS.SYSIN. This data set contains
the required COBOL quick start input control statements used to control the
generation of the COMLIB file definition. See Control Statements on page 5-7
for detailed information on these control statements.

■ To conform to your shop standards, additional modifications may be required.

Variable Name Description

CLLOAD Specify the name of your COMLIB load library.

COPYLIB Specify the name of the COBOL copylib that is needed.

DEFLIB Specify the source definition library where the new file
definition should be written.

MEMBER Specify a member name for the new file definition. This
name must be the same name that is specified in the NAME
parameter on the FILEGEN statement. If an existing
member name is specified, it is overwritten. See the
specifications for the FILEGEN control statement in
FILEGEN Control Statement on page 5-7 for more details.

//* MEMBER CLCOBQS
//***
//* EXECUTE THE COBOL QUICK START UTILITY.
//* THE SYSCOPY DD STATEMENT IS USED FOR MVS COPYBOOK LIBRARIES.
//* THE PANDD1 DD STATEMENT IS USED FOR PANVALET COPYBOOK LIBRARIES.
//* THE MASTER DD STATEMENT IS USED FOR LIBRARIAN COPYBOOK LIBRARIES.
//***
//COBOLQS PROC CLLOAD=,
// COPYLIB=,
// DEFLIB=,
// MEMBER=
//COBOLQS EXEC PGM=COBOLQS,REGION=1024K
//STEPLIB DD DSN=&CLLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSCOPY DD DSN=©LIB,DISP=SHR
//PANDD1 DD DSN=©LIB,DISP=SHR
//MASTER DD DSN=©LIB,DISP=SHR

Figure 5-2 Sample Execution JCL for the COBOL Quick Start Utility (Page 1 of 2)
COBOL Quick Start 5–3

Using CA-Panvalet and CA-Librarian COBOL Copybooks
Using CA-Panvalet and CA-Librarian COBOL Copybooks
COBOL quick start provides direct access to COBOL copybooks that are stored in
CA-Panvalet or CA-Librarian source libraries. Before using this facility, you must
link edit the appropriate CA-Panvalet or CA-Librarian interface modules with the
COBOL quick start interface modules. The required CA-Panvalet and
CA-Librarian interface modules are included in your CA-Panvalet or
CA-Librarian software package.

CA-Panvalet Interface
Note: The generated COMLIB field length for a GRAPHIC, VARGRAPHIC, and
LONG VARGRAPHIC string is 2*n, where n is the DB2 length of the string
(number of DBCS characters).

Figure 5-3 contains the JCL required for link editing the CA-Panvalet interface
modules with the COBOL quick start load module.

//SYS004 DD DSN=&DEFLIB(&MEMBER),DISP=OLD
//SYSIN DD DUMMY
// PEND
//**
//* BEFORE SUBMITTING THIS JCL, YOU MUST SPECIFY THE FOLLOWING
//* INFORMATION:
//* CLLOAD - NAME OF YOUR COMLIB LOAD LIBRARY
//* COPYLIB - NAME OF YOUR COBOL COPY LIBRARY. THIS IS AN
//* MVS, PANVALET, OR LIBRARIAN COPYBOOK LIBRARY.
//* DEFLIB - NAME OF YOUR COMLIB SOURCE DEFINITION LIBRARY
//* THE GENERATED FILE DEFINITION IS WRITTEN TO
//* THIS LIBRARY.
//* MEMBER - MEMBER NAME FOR THE DEFINITION YOU ARE GENERATING.
//*
//* YOU MUST ALSO PROVIDE THE APPROPRIATE SYSIN DATA IN THE
//* COBOLQS.SYSIN DD STATEMENT OVERRIDE.
//**
//QS EXEC COBOLQS,
// CLLOAD='BUILDER.CL045.LOADLIB',
// COPYLIB='COBOL.COPYBOOK.LIBRARY',
// DEFLIB='COMLIB.DEFLIB',
// MEMBER='SAMPLEFD'
//COBOLQS.SYSIN DD *
 FILEGEN NAME=SAMPLEFD,TYPE=FIXED,RECSIZE=80
 SEGMENT NAME=OFFICE,NUMBER=10,LEVEL=1
 $COBOL
 01 OFFICE-DATA.
 02 OFFICE-CODE PIC S9(3).
 02 OFFICE-ADDRESS.
 03 OFFICE-STREET PIC X(20).
 03 OFFICE-CITY PIC X(15).
 03 OFFICE-STATE PIC X(2).
 03 OFFICE-ZIP.
 04 OFFICE-ZIP-FIRST-FIVE PIC X(5).
 04 OFFICE-ZIP-LAST-FOUR PIC X(4).
 02 OFFICE-PHONE PIC 9(7).
 02 OFFICE-AREA-CODE PIC X(3).
 02 SPEED-DIAL PIC X(3).
 02 FILLER PIC X(18).
 $ECOBOL
/*

Figure 5-2 Sample Execution JCL for the COBOL Quick Start Utility (Page 2 of 2)
5–4 Getting Started Guide

Using CA-Panvalet and CA-Librarian COBOL Copybooks
You may have to replace the INCLUDE LIBSYS(PAM) statement with several
INCLUDE statements. See your CA-Panvalet book for the exact INCLUDE
statements that are required.

After the CA-Panvalet interface modules have been link edited, the
COPYPCOBOL parameter on the SEGMENT statement can be used. SEGMENT
Control Statement on page 5-9 contains the specifications for the SEGMENT
statement.

CA-Librarian Interface
Figure 5-4 contains a listing of the JCL required for link editing the CA-Librarian
interface modules with the COBOL quick start interface modules.

//* MEMBER CLCOBPL
//**
//* LINK EDIT PANVALET INTERFACE MODULES WITH COBOL QUICK START.
//**
//CLPANLK PROC CLLOAD=,
// PANLOAD=
//LINK EXEC PGM=IEWL,REGION=512K,PARM='LIST,MAP,LET,XREF,NCAL'
//SYSLIB DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//LIBSYS DD DSN=&PANLOAD,DISP=SHR
//LLIB DD DSN=&CLLOAD,DISP=SHR
//SYSLMOD DD DSN=&CLLOAD,DISP=SHR
// PEND
//**
//* BEFORE SUBMITTING THIS JCL, YOU MUST SPECIFY THE FOLLOWING
//* INFORMATION:
//* CLLOAD - NAME OF YOUR COMLIB LOAD LIBRARY.
//* PANLOAD - NAME OF YOUR PANVALET SYSTEM LOAD LIBRARY.
//**
//PANLINK EXEC CLPANLK,
// CLLOAD='BUILDER.CL045.LOADLIB',
// PANLOAD='PANVALET.SYSTEM.LOADLIB'
//LINK.SYSLIN DD *
 INCLUDE LIBSYS(PAM)
 INCLUDE LLIB(COMLIBP)
 ENTRY COMLIBP
 NAME COMLIBP(R)
/*

Figure 5-3 JCL to Link CA-Panvalet Interface Modules
COBOL Quick Start 5–5

Using CA-Panvalet and CA-Librarian COBOL Copybooks
You may have to replace the INCLUDE LIBSYS(FAIR) statement with several
INCLUDE statements. See your CA-Librarian book for the exact INCLUDE
statements that are required. Unresolved external references will occur when link
editing the CA-Librarian interface; these are normal and can be safely ignored.

After the CA-Librarian interface modules have been link edited, the
COPYLCOBOL parameter on the SEGMENT statement can be used. SEGMENT
Control Statement on page 5-9 contains the specifications for the SEGMENT
statement.

//* MEMBER CLCOBLL 00010000
//**
00020000
//* LINK EDIT LIBRARIAN INTERFACE MODULES WITH COBOL QUICK START. * 00030000
//**
00040000
//CLLIBLK PROC CLLOAD=, 00050000
// LIBLOAD= 00060000
//LINK EXEC PGM=IEWL,REGION=2M,PARM='LET,LIST,MAP,NCAL' 00070000
//SYSLIB DD DUMMY 00080000
//SYSPRINT DD SYSOUT=* 00090000
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) 00100000
//LIBSYS DD DSN=&LIBLOAD,DISP=SHR 00110000
//LLIB DD DSN=&CLLOAD,DISP=SHR 00120000
//SYSLMOD DD DSN=&CLLOAD,DISP=SHR 00130000
// PEND 00140000
//**
00150000
//* BEFORE SUBMITTING THIS JCL, YOU MUST SPECIFY THE FOLLOWING * 00160000
//* INFORMATION: * 00170000
//* * 00180000
//* CLLOAD - NAME OF YOUR COMLIB LOAD LIBRARY. * 00190000
//* LIBLOAD - NAME OF YOUR LIBRARIAN SYSTEM LOAD LIBRARY. * 00200000
//* * 00210000
//**
00220000
//LIBLINK EXEC CLLIBLK, 00230000
// CLLOAD='BUILDER.CL045.LOADLIB', 00240000
// LIBLOAD='LIBRARN.SYSTEM.LOADLIB' 00250000
//LINK.SYSLIN DD * 00250100
 INCLUDE LIBSYS(FAIRCLS) 00250200
 INCLUDE LIBSYS(FAIRERR) 00250300
 INCLUDE LIBSYS(FAIRLOC) 00250400
 INCLUDE LIBSYS(FAIRMOD) 00250500
 INCLUDE LIBSYS(FAIRNTE) 00250600
 INCLUDE LIBSYS(FAIROPN) 00250700
 INCLUDE LIBSYS(FAIRPNT) 00250800
 INCLUDE LIBSYS(FAIRREC) 00250900
 INCLUDE LIBSYS(FAIRSCAN) 00251000
 INCLUDE LIBSYS(FAIRSEC) 00251100
 INCLUDE LLIB(COMLIBL) 00251200
 ENTRY COMLIBL 00251300
 NAME COMLIBL(R) 00252000
/* 00260000

Figure 5-4 JCL to Link CA-Librarian Interface Modules
5–6 Getting Started Guide

Control Statements
Control Statements
The COBOL quick start Utility uses the following control statements as input:

The function and syntax of these statements are described in the following
sections.

Coding Rules
When writing COBOL quick start control statements, the following rules must be
observed:

■ Each non-continued control statement must contain a control statement
command that identifies the control statement type.

■ Each control statement may contain keyword parameters. Keyword
parameters may be specified in any order. Keyword parameters must be
separated by commas. Embedded blanks are not allowed between parameters.

■ Each parameter must be coded unless stated otherwise.

■ A comma following the last parameter on a statement causes a continuation to
the next statement.

■ Comments may be placed after the last parameter with an intervening blank.

■ Columns 1 through 71 of the control statement are scanned. Columns 72
through 80 are ignored.

FILEGEN Control Statement

Statement Syntax
FILEGEN NAME= ,
 TYPE=,
 RECSIZE=,
 RECBLK=,
 BUFFSIZE=,
 FLDPREFX=

Figure 5-5 FILEGEN Control Statement Format

■ FILEGEN The FILEGEN statement provides a name for the file
definition that is being generated and identifies the type of file
(for example, VSAM KSDS or IMS) being generated.

■ SEGMENT The SEGMENT statement is used to define the segments
within a file.

■ $COBOL This statement signals that an in-stream COBOL definition
follows.

■ $ECOBOL This statement signals the end of an in-stream COBOL
definition.
COBOL Quick Start 5–7

Control Statements
■ FILEGEN
(required)

FILEGEN is a control statement command. It identifies the
control statement type.

■ NAME
(required)

The NAME parameter specifies the name of the file definition
being generated. A file name can be from 1-8 characters long.
The first character must be alphabetic. The remaining
characters can be a combination of alphanumeric characters.
When the generated file definition is written to a partitioned
data set, the file name specified here must be identical to the
member name specified in the JCL.

■ TYPE
(required)

The TYPE parameter specifies the type of COMLIB file
definition that you want to create. Valid file types are listed in
the following table.

File Type Description

DB2 DB2 Relational Database

KSDS VSAM Key Sequenced Data Set

ESDS VSAM Entry Sequenced Data Set

AIX VSAM Alternate Index Data Set

DLI IMS Database

DLIHDAM IMS HDAM Database

ISAMFIX ISAM Fixed Length Record Format Data Set

ISAMVAR ISAM Variable Length Record Format Data Set

FIXED Fixed Length Record Format Data Set

VARIABLE Variable Length Record Format Data Set

UNDEFINED Undefined Record Format Data Set

GDBI General Data Base Interface Mapped File

■ RECSIZE
(optional)

The RECSIZE parameter specifies the number of data bytes in
the data portion of a record or segment. Enter a number from
1-9999. This parameter only applies to FIXED, ISAMFIX,
VARIABLE, or ISAMVAR file types.

■ RECBLK
(optional)

The RECBLK parameter specifies the number of records in
each block. Enter a number from 1-999. This parameter only
applies to FIXED and ISAMFIX file types.
5–8 Getting Started Guide

Control Statements
SEGMENT Control Statement

Statement Syntax
SEGMENT NAME= ,
 NUMBER=,
 LEVEL=,
 COPYCOBOL=,
 COPYPCOBOL=,
 COPYLCOBOL=

Figure 5-6 SEGMENT Control Statement Format

■ BUFFSIZE
(optional)

The BUFFSIZE parameter specifies the size of the buffer that
is needed to process the file. Enter a value from 1-32760 or
1K-9999K.

For DB2, DLI, DLIHDAM, and GDBI file types, enter the
maximum amount of main storage required to hold a logical
record. For KSDS and ESDS file types, enter the maximum
record size according to the VSAM cluster definition. If the
file type is AIX, enter the alternate index control interval size.
For ISAMFIX, ISAMVAR, FIXED, VARIABLE, and
UNDEFINED, enter the block size.

■ FLDPREFX
(optional)

The FLDPREFX parameter specifies the 1-3 character prefix to
be used for generating primary field names in the COMLIB
file definition. Primary field names are required in a COMLIB
file definition and must be assigned a unique 1-8 character
name. Since COBOL field names can be longer than 8
characters and may not be unique within the first 8 characters,
COBOL quick start automatically generates a unique
8-character primary field using the FLDPREFX value
followed by a generated field number.

If the FLDPREFX parameter is omitted, the default prefix is F
and the generated primary field names have the format
Fnnnnnnn where nnnnnnn is a number from
0000001-9999999. See COMLIB Field Name Generation on
page 5-12 for more information.

■ SEGMENT
(required)

SEGMENT is a control statement command. It identifies
the control statement type.

■ NAME
(required)

The NAME parameter assigns a name to a segment.
Segment names can be from 1-8 characters. The first
character must be alphabetic. The remaining characters
can be a combination of alphanumeric characters.
COBOL Quick Start 5–9

Control Statements
Processing Notes
COPYCOBOL, COPYPCOBOL, and COPYLCOBOL parameters are mutually
exclusive. Only one of these parameters should be specified on a SEGMENT
statement. Figure 5-7 shows an example of the input control statements used with
the COPY parameter.

When using any of the COPY parameters (COPYCOBOL, COPYPCOBOL,
COPYLCOBOL), a NOPRINT option can be specified to suppress the listing of the
copybook on the SYSPRINT file. This option is specified as
COPYCOBOL=(copybookname,NOPRINT)

If a COPY parameter is not specified on the SEGMENT statement, then an
in-stream COBOL definition must be provided. In this case, the SEGMENT
statement must be followed by a $COBOL statement, the in-stream COBOL
definition, and the $ECOBOL statement which marks the end of the definition. See
$COBOL and $ECOBOL Control Statements on page 5-11 for more information.

■ NUMBER
(required)

The NUMBER parameter assigns a number that uniquely
identifies the segment. Enter a number from 1-255.
Subordinate segments must have a number larger than
the parent segment and smaller than any children
segments.

■ LEVEL
(required)

The LEVEL parameter specifies the subordination of
segments. The root segment must have a level number of
1. All subordinate segments must be assigned a number
from 2 to 9.

■ COPYCOBOL
(optional)

The COPYCOBOL parameter specifies the name of the
COBOL copybook that contains the field definitions for
this segment. This copybook must be located in an
OS/390 data set assigned to the SYSCOPY DD statement
in the JCL.

■ COPYPCOBOL
(optional)

The COPYPCOBOL parameter specifies the name of the
COBOL copybook that contains the field definitions for
this segment. This copybook must be located in a
CA-Panvalet library assigned to the PANDD1 DD
statement in the JCL.

■ COPYLCOBOL
(optional)

The COPYLCOBOL parameter specifies the name of the
COBOL copybook that contains the field definitions for
this segment. This copybook must be located in a
CA-Librarian library assigned to the MASTER DD
statement in the JCL.

FILEGEN NAME=XXXX,TYPE=X
SEGMENT NAME=XXXX,NUMBER=XX,LEVEL=X,
COPYCOBOL=copybookname

Figure 5-7 Control Statements Used with the COPY Parameter
5–10 Getting Started Guide

Conversion Rules
$COBOL and $ECOBOL Control Statements

Example of Syntax and Use

The $COBOL and $ECOBOL control statements are used in place of the SEGMENT
COPY parameter to process instream COBOL source statements. The $COBOL
statement must follow a SEGMENT statement that does not contain a COPY
parameter. The actual COBOL source statements to be processed must follow the
$COBOL statement. The end of the in-stream COBOL source statements must be
marked by the $ECOBOL statement. The in-stream COBOL source statements are
used to generate field definitions for the segment.

$COBOL and $ECOBOL can be placed anywhere within columns 1-71. They must
be the only command on the statement. There are no parameters for either
statement.

Conversion Rules

Generated COMLIB File Definition
This utility generates a skeletal COMLIB file definition which must be edited and
validated by VISION:Workbench for DOS, VISION:Workbench for ISPF, or a text
editor prior to its use. The following items should be considered when editing the
generated file definition:

FILEGEN NAME=XXXX,TYPE=X
SEGMENT NAME=XXXX,NUMBER=XX,LEVEL=X
$COBOL
instream COBOL source statements
$ECOBOL

Figure 5-8 $COBOL and $ECOBOL Control Statements

■ Segment key assignment Each segment must define at least one field
as the key; additional keys can be assigned if
wanted.

■ Segment information Additional segment information such as
segment order and number of fixed
occurrences should be provided as needed.

■ Field information Primary and alternate field name
assignments can be modified if wanted (see
COMLIB Field Name Generation on
page 5-12). Additional field information
such as rounding, editing, and automatic
table lookup results should be provided as
needed.
COBOL Quick Start 5–11

Conversion Rules
COMLIB Field Name Generation
All fields within a COMLIB file definition must be assigned a unique 1-8 character
name. This name is referred to as the primary field name.

When building a skeletal COMLIB file definition from COBOL field definitions, a
unique 1-8 character primary field name must be assigned to each field. Since
COBOL field names can be longer than 8 characters and may not be unique within
the first 8 characters, COBOL quick start automatically generates a unique primary
field name using the FLDPREFX parameter value on the FILEGEN statement
followed by a generated field number. If the FLDPREFX parameter is omitted, the
default prefix is F and the generated primary field names have the format
Fnnnnnnn where nnnnnnn is a number from 0000001-9999999.

COBOL quick start uses the COBOL field name to generate the Column Heading
specifications.

Once the skeletal file definition has been created, it can be imported into the
VISION:Workbench for DOS, VISION:Workbench for ISPF, and the generated
primary field names can be replaced with more descriptive primary field names.
5–12 Getting Started Guide

Conversion Rules
Unsupported COBOL Specifications
COBOL quick start does not support the following COBOL field specifications:

■ 66 levels. All references to the field are removed. A warning message is issued.

■ 77 levels. Any field defined at level 77 will have a starting location of 1. The
resulting definition should be checked. A warning message is issued.

■ 88 levels. All references to the field are removed. A warning message is issued.

■ Numeric fields with more than 9 digits to the right of the decimal place are
supported for packed fields; however, for any other field type, a warning
message is issued indicating that the number of decimal places has been
truncated to 9.

■ Binary fields larger than S9(9) are generated as character fields. A warning
message is issued.

■ COMP-2 data types are generated as 8-byte character fields. A warning
message is issued.

■ If the length of a numeric field exceeds 15 digits, the field is generated as
character. A warning message is issued.

■ The P edit parameter on the PICTURE clause always generates a zero SCALE
value. The resulting definition should be checked. A warning message is
issued.

■ If the size of a field exceeds 255, a warning message is issued indicating that the
generated field length has been truncated to 255. The generated definition
should be modified to include an additional field that defines the remaining
bytes or at least the last byte of the field.

■ OCCURS clause. A warning message is issued to indicate that only 1
occurrence of the item was generated. Additional occurrences must be added
to the definition.

If the item on the OCCURS clause is variably occurring (DEPENDING ON
clause present), then the additional occurrences can be defined by defining the
generated occurrence as a lower level variably occurring segment, if possible.
This requires the field containing the number of occurrences to be defined as a
count field in the generated file definition.

When a DEPENDING ON clause is encountered, an additional message is
issued to inform you that you must adjust the field start locations of subsequent
fields. This is because the generated start location of the next field will be
incorrect if you define the generated occurrence as a lower level variably
occurring segment. Also, the start location of the next field is calculated using
the maximum number of occurrences when in reality the number of
occurrences varies.
COBOL Quick Start 5–13

Conversion Rules
If the item on the OCCURS clause is fixed occurring (no DEPENDING ON
clause), then the additional occurrences can be defined either by:

– Defining the generated occurrence as a lower level fixed occurring segment.

If this method is used, a reference to the field will initiate a loop where each
occurrence of the field is automatically processed.

– Defining a separate field for each occurrence.

If this method is selected, then a separate field name exists for each
occurrence.

– Defining one field whose length accommodates all occurrences (for
example, define a 30-byte field if you have a 3-byte field that occurs 10
times).

If this method is chosen, then each occurrence can be accessed by using
dynamic partial fielding, which is similar to indexing.

Note: If the field name is FILLER or blank, all references to the field
are removed from the definition.
5–14 Getting Started Guide

Chapter
6 D
B2 Quick Start
Note: This chapter is applicable to OS/390 only.

DB2 quick start is a batch utility that generates COMLIB file definitions from
existing DB2 table definitions. During DB2 quick start processing, each DB2 table
that is processed becomes a separate segment in the COMLIB file definition being
created. DB2 column information is retrieved from the DB2 SYSCOLUMNS table,
converted into COMLIB field specifications, and added to the segment being
created. A COMLIB field statement (L0) is created for each column in the specified
DB2 table.

Multiple file definitions can be generated in a single DB2 quick start execution.
Each generated file definition is stored as a separate member in the indicated
source definition library. The specified file name is used as the member name
when the generated definition is saved in the source definition library. If an
existing member name is specified, the existing member is replaced when the new
definition is saved. If a new member name is specified, then a new member is
created.

Once a COMLIB file definition has been created, any additional file information
that is required can be added with the VISION:Workbench for DOS or ISPF, or a
text editor.

The DB2 quick start utility can also run from VISION:Workbench for ISPF. The
IMPORT Option points you to a menu for selecting the quick start utility you want
to run. The subsequent panels prompt you for the information needed to run the
utility. Once the information is gathered, the utility is run immediately and the
output displayed for you to browse.

Note: File definitions are stored to and retrieved from a common library
(COMLIB) when needed at processing time. Unless specifically stated otherwise,
the term COMLIB refers to this common file definition.
DB2 Quick Start 6–1

Flow Diagram
Flow Diagram

As shown in Figure 6-1, DB2 quick start uses the following two input data sets:

DB2 quick start produces two output files:

Utility Execution
DB2 quick start is a batch utility. Before this utility can be executed, the DB2 quick
start Data Base Request Module (DBRM), provided on the installation tape, must
be input to a DB2 bind. This creates the DB2 plan required by the DB2 quick start
utility.

Figure 6-2 on page 6-3 contains the same JCL required to execute DB2 quick start.
This JCL contains an in-stream procedure followed by JCL statements to execute
the procedure and sample DB2 quick start control statements. The sample control
statements can be used to create a COMLIB file definition from the sample tables
provided with DB2 (DSN8230.DEPT, DSN8230.EMP, and DSN8230.PROJ). If you
have created a DB2 plan by binding the DB2 quick start DBRM during the
installation process, you can use these sample control statements to see how DB2
quick start works.

Figure 6-1 DB2 Quick Start Flow Diagram

■ STEPLIB Specifies the COMLIB load library and the DB2 load library.

■ SYSIN Specifies the appropriate DB2 quick start control statements.

■ SYSPRINT Contains a summary report on the file definition generation
process. The PRINT parameter on the SEGMENT control
statement can be used to control the contents of this report. See
SEGMENT Control Statement on page 6-8 for more
information.

■ SYS004 Generated file definitions are written to the partitioned data
set pointed to by the DD name SYS004. This must be a
partitioned data set.
6–2 Getting Started Guide

Utility Execution
At a minimum, you must make the following changes before submitting this JCL:

■ Supply a JOB card

■ Supply values for the following procedure variables detailed in the following
table.

■ Provide a DD statement override for DB2QS.SYSIN. This data set contains the
required DB2 quick start input control statements which are used to control the
generation of COMLIB file definitions. See Control Statements on page 6-4 for
detailed information on these control statements.

■ To conform to your shop standards, additional modifications may be required.

Variable Name Description

CLLOAD Specify the name of your COMLIB load library.

DB2LOAD Specify the name of your DB2 load library.

DEFLIB Specify the source definition library to which the new
file definition should be written. DEFLIB must specify a
partitioned data set.

//* MEMBER CLDB2QS
//**
//* EXECUTE THE DB2 QUICK START UTILITY.
//**
//DB2QS PROC CLLOAD=,
// DB2LOAD=,
// DEFLIB=
//DB2QS EXEC PGM=DB2QS,REGION=1024K
//STEPLIB DD DSN=&CLLOAD,DISP=SHR
// DD DSN=&DB2LOAD,DISP=SHR
//SYSTERM DD DUMMY
//SYSPRINT DD SYSOUT=*,
// DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYS004 DD DSN=&DEFLIB,DISP=OLD
//SYSIN DD DUMMY
// PEND
//**
//* BEFORE SUBMITTING THIS JCL, YOU MUST SPECIFY THE FOLLOWING
//* INFORMATION:
//*
//* CLLOAD - NAME OF YOUR COMLIB LOAD LIBRARY.
//* DB2LIB - NAME OF YOUR DB2 DSN.DSNLOAD LIBRARY.
//* DEFLIB - NAME OF YOUR COMLIB SOURCE DEFINITION LIBRARY.
//* THE GENERATED FILE DEFINITION IS WRITTEN TO
//* THIS LIBRARY.
//*
//* YOU MUST ALSO PROVIDE THE APPROPRIATE SYSIN DATA IN THE
//* DB2QS.SYSIN DD STATEMENT OVERRIDE.
//**

Figure 6-2 Sample Execution JCL for the DB2 Quick Start Utility (Page 1 of 2)
DB2 Quick Start 6–3

Control Statements
Control Statements
The DB2 quick start utility uses the following control statements as input:

The function and syntax of these statements are described in the following
sections.

//QS EXEC DB2QS,
// CLLOAD='BUILDER.CL045.LOADLIB',
// DB2LOAD='DB2.SYSTEM.DSNLOAD',
// DEFLIB='COMLIB.DEFLIB'
//*
//DB2QS.SYSIN DD *
 DB2CNTL DB2PLAN=DB2QS,DB2SYS=DB2T
 FILEGEN NAME=DB2FD,BUFFSIZE=1024K
 SEGMENT NAME=DEPT,NUMBER=10,LEVEL=1,TABLE=DEPT,CREATOR=DSN8230,
 PRINT=ALL
 NEWPAGE
 SEGMENT NAME=EMPLOYEE,NUMBER=20,LEVEL=2,TABLE=EMP,CREATOR=DSN8230,
 PRINT=ALL
 NEWPAGE
 SEGMENT NAME=PROJECT,NUMBER=30,LEVEL=2,TABLE=PROJ,CREATOR=DSN8230,
 PRINT=ALL
/*

Figure 6-2 Sample Execution JCL for the DB2 Quick Start Utility (Page 2 of 2)

■ DB2CNTL Information from the DB2CNTL statement establishes the
proper DB2 environment.

■ FILEGEN The FILEGEN statement triggers the start of a new file
definition. The NAME parameter specified on the FILEGEN
statement is used as both the file name and the member name
when the generated file definition is saved.

■ SEGMENT The SEGMENT statement defines file segments. Each
segment corresponds to a DB2 table. Field information for the
specified DB2 table is retrieved from the DB2 SYSCOLUMNS
table, converted to COMLIB field specifications, and used to
create field definitions for the current segment.

■ NEWPAGE The NEWPAGE statement triggers a page eject on the DB2
quick start summary report.
6–4 Getting Started Guide

Control Statements
Coding Rules
When writing DB2 quick start control statements, the following rules must be
observed:

■ Each non-continued control statement must contain a control statement
command that identifies the control statement type.

■ Each control statement may contain keyword parameters. Keyword
parameters may be specified in any order. Keyword parameters must be
separated by commas. Embedded blanks are not allowed between parameters.

■ Each parameter must be coded unless stated otherwise.

■ A comma following the last parameter on a statement causes a continuation to
the next statement.

■ Comments may be placed after the last parameter with an intervening blank.

■ Blank lines within the SYSIN file are printed on the summary report output to
SYSPRINT. Blank lines, along with the NEWPAGE control statement can be
used to format the DB2 quick start summary report.

■ Columns 1 through 71 of the control statement are scanned. Columns 72
through 80 are ignored.

DB2CNTL Control Statement

Statement Syntax

DB2CNTL DB2PLAN=,
DB2SYS=

Figure 6-3 DB2CNTL Control Statement Format

■ DB2CNTL
(required)

DB2CNTL is a control statement command. It identifies the
control statement type. The DB2 control statement is used to
establish the proper DB2 environment. DB2 quick start uses
the TSO Call Attach Facility to connect to DB2. Static SQL is
used to process information in the DB2 SYSCOLUMNS table.

■ DB2PLAN
(required)

The DB2PLAN parameter specifies the name of the DB2 plan
that should be used when accessing DB2 tables. The DB2 plan
is created during the installation process by binding the
provided DB2 quick start DBRM.

■ DB2SYS
(required)

The DB2SYS parameter specifies the name of the DB2 system
that is to be used.
DB2 Quick Start 6–5

Control Statements
FILEGEN Control Statement

Statement Syntax

FILEGEN NAME=,
BUFFSIZE=,
FLDPREFX=,
FLDNAME=,
HEADING=,
LOGREL=,
LONGNAME=,
DESCRIPT=,
DATEFLD=

Figure 6-4 FILEGEN Control Statement Format

■ FILEGEN
(required)

FILEGEN is a control statement command. It identifies the
control statement type. The FILEGEN control statement
triggers the start of a new file definition.

■ NAME
(required)

The NAME parameter specifies the name of the file definition
that is being generated. A file name can be from 1 to 8
characters. The first character must be alphabetic. The
remaining characters can be a combination of alphanumeric
characters.

When the generated file definition is saved, the file name is
also used as the member name. If an existing member name is
specified, the existing member is overwritten. If a new
member name is specified, a new member is created.

■ BUFFSIZE
(optional)

The BUFFSIZE parameter defines the size of the buffer
needed to process a logical record. Enter a number from 1 to
32760. Multiples of 1024 can be entered as nnnnK where nnnn
is a number between 1 to 9999.

■ FLDPREFX
(optional)

The FLDPREFX parameter specifies the 1 to 3 character prefix
for generating primary field names in the COMLIB file
definition. Primary field names are required in a COMLIB file
definition and must be assigned a unique 1 to 8-character
name. Since DB2 field names can be longer than 8-characters
and may not be unique within the first 8 characters, DB2
quick start automatically generates a unique 8-character
primary field using the FLDPREFX value followed by a
generated field number.

If the FLDPREFX parameter is omitted, the default prefix is F
and the generated primary field names have the format
Fnnnnnnn where nnnnnnn is a number from 0000001 to
9999999. See COMLIB Field Name Generation on page 6-10
for more information.
6–6 Getting Started Guide

Control Statements
■ FLDNAME
(optional)

The FLDNAME parameter specifies how the field name
(short name) is derived. Enter GEN to specify that the name
is to be generated using the FLDPREFIX parameter
convention. Enter TRUNC to specify that the name is to be a
truncation (first 8 characters) of the DB2 table column name.

If the FLDNAME parameter is omitted, an entry of GEN is
assumed. Note that an entry of TRUNC can result in
duplicate names that you need to resolve by modifying the
generated code.

■ HEADING
(optional)

The HEADING parameter specifies whether the Column
Heading specifications (Ln statements) in the generated
definition should contain the DB2 Label information for the
SYSCOLUMNS table or the DB2 column name. Enter LABEL
if the label information is to be used or COLUMN if the
column name is to be used. If the HEADING parameter is
omitted, the LABEL specification is assumed.

■ LOGREL
(optional)

The LOGREL parameter specifies whether the DB2 Quick
Start utility should generate LR statements for the definition.
Enter YES to cause LR statements to be generated or NO to
suppress the generation of LR statements. If the LOGREL
parameter is omitted, an entry of YES is assumed . You must
specify the foreign keys for a table to DB2 in order for this
function of the utility to work correctly.

■ LONGNAME
(optional)

The LONGNAME parameter specifies whether the DB2
Quick Start utility should generate LX statements for the
definition. An entry of YES specifies that LX statements are
to be generated containing the full column name. An entry of
NO specifies that LX statements should not be generated. If
the LONGNAME parameter is omitted, an entry of YES is
assumed.

■ DESCRIPT
(optional)

The DESCRIPT parameter specifies whether the DB2 Quick
Start utility should generate D1 statements for the definition.
An entry of YES specifies that D1 statements are to be
generated using the Label information in the SYSCOLUMNS
table. An entry of NO specifies that D1 statements should not
be generated. If the DESCRIPT parameter is omitted, an entry
of YES is assumed.

■ DATEFLD
(optional)

The DATEFLD parameter specifies how DB2 columns with a
data type of DATE are to be handled. An entry of YES
specifies that a DB2 data type of DATE should be defined as
a Lilian Date (Type D) to VISION:Builder. An entry of NO
specifies that a DB2 data type of DATE should be defined as
a character string (Type C) with a length of 10 to
VISION:Builder. If the DATEFLD parameter is omitted, an
entry of NO is assumed.
DB2 Quick Start 6–7

Control Statements
SEGMENT Control Statement

Statement Syntax

SEGMENT NAME= ,
NUMBER=,
LEVEL=,
TABLE=,
CREATOR=,
PRINT=

Figure 6-5 SEGMENT Control Statement Format

■ SEGMENT
(required)

SEGMENT is a control statement command. It identifies the
control statement type. Each COMLIB segment corresponds
to a specific DB2 table.

■ NAME
(required)

The NAME parameter assigns a name to a segment. Segment
names can be from 1 to 8 characters.

■ NUMBER
(required)

The NUMBER parameter assigns a number that uniquely
identifies the segment. Enter a number from 1 to 255.
Subordinate segments must have a number larger than the
parent segment and smaller than any children segments.

■ LEVEL
(required)

The LEVEL parameter specifies the subordination of
segments. The root segment must have a level number of 1.
All subordinate segments must be assigned a number from 2
to 9.

■ TABLE
(required)

The TABLE parameter specifies the name of the DB2 table
from which the field information for this segment should be
generated.

■ CREATOR
(required)

The CREATOR parameter qualifies the table name. Enter the
authorization or creator ID for the table, or enter an asterisk
(*). If an asterisk is entered, field information is generated
from all tables with the specified table name, regardless of the
creator ID.

■ PRINT
(optional)

The PRINT parameter controls the information that is printed
on the summary report. To print DB2 field information, enter
DB2. To print COMLIB field information, enter ANSWER. To
print both DB2 and COMLIB field information, enter ALL.
6–8 Getting Started Guide

Conversion Rules
NEWPAGE Control Statement

Statement Syntax

Conversion Rules

Generated COMLIB File Definition
This utility generates a skeletal COMLIB file definition which must be edited and
validated by the VISION:Workbench for DOS, VISION:Workbench for ISPF, or a
text editor prior to its use. The following items should be considered when editing
the generate relational file definition:

NEWPAGE

Figure 6-6 NEWPAGE Control Statement Format

■ NEWPAGE
(required)

NEWPAGE is a control statement command. It causes a page
eject in the summary report that is written to SYSPRINT.
There are no parameters for this control statement.

■ Segment key
assignment

Each segment must define at least one field as the
key; additional keys can be assigned if wanted.

■ Logical relationships Logical relationships must be provided for
segments defined at levels 2 to 9.

■ Segment information Additional segment information such as segment
(row) order and suppress duplication should be
provided as needed.

■ Field information Primary field name assignments can be modified
if wanted (see below). Additional field
information such as rounding, editing, column
headings, and automatic table lookup results
should be provided as needed.
DB2 Quick Start 6–9

Conversion Rules
COMLIB Field Name Generation
All fields within a COMLIB file definition must be assigned a unique 1- to 8-
character name. This name is referred to as the primary field name.

When building a skeletal COMLIB file definition from DB2 field definitions, a
unique 1 to 8-character primary field name must be assigned to each field. Since
DB2 field names can be longer than 8 characters and may not be unique within the
first 8 characters, DB2 quick start automatically generates a unique primary field
name using the FLDPREFX parameter value on the FILEGEN statement followed
by a generated field number. If the FLDPREFX parameter is omitted, the default
prefix is F and the generated primary field names have the format Fnnnnnnn
where nnnnnnn is a number from 0000001 to 9999999.

DB2 quick start uses the DB2 column name to generate the External Column Name
specification.

Once the skeletal file definition has been created, it can be imported into the
VISION:Workbench for DOS or VISION:Workbench for ISPF, and the generated
primary field names can be replaced with more descriptive primary field names.

Generating COMLIB Field Information
The following table shows how the information in the DB2 SYSCOLUMNS table
maps to the generated COMLIB field statements. The table on page 6-11
summarizes how DB2 field types and lengths are converted to COMLIB field types
and lengths.

Note: The generated COMLIB field length for a GRAPHIC, VARGRAPHIC, and
LONG VARGRAPHIC string is 2*n where n is the DB2 length of the string
(number of DBCS characters).

DB2 SYSCOLUMNS Field COMLIB Field

NAME Generates the Column Name specification.

COLTYPE Generates the Field Type specification. See the
table on page 6-11 for more information.

LENGTH Generates the Field Length specification. See the
table on page 6-11 for more information.

SCALE Generates the Decimal Places specification. See
the table on page 6-11 for more information.

KEYSEQ Generates the Segment Key Value specification.

LABEL Generates the Column Heading specifications.
6–10 Getting Started Guide

Conversion Rules
DB2 COMLIB

Field Type Field Length Field Type Field Length

INTEGER 4 Fixed (F) 4

SMALLINT 2 Fixed (F) 2

FLOAT 4 Floating Point
(E)

4

FLOAT 8 Floating Point
(E)

4 (Truncate)

DECIMAL Up to 31 digits Packed
Decimal (P)

Up to 15 bytes -
possible
truncation

CHAR Up to 254 Character (C) Up to 255

VARCHAR Up to maximum record
size

Variable (V) Up to 99H,
possible
truncation.

LONG
VARCHAR

Up to maximum page
size

Variable (V) Up to 99H,
possible
truncation.

GRAPHIC Up to 127 Character (C) Up to 255

VARGRAPHIC Up to maximum record
size

Variable (V) Up to 99H,
possible
truncation.

LONG
VARGRAPHIC

Up to maximum page
size

Variable (V) Up to 99H,
possible
truncation.

DATE 4 Character (C) 10

TIME 3 Character (C) 8

TIMESTAMP 10 Character (C) 26
DB2 Quick Start 6–11

Conversion Rules
6–12 Getting Started Guide

Chapter
7 V
ISION:Results Quick Start
The VISION:Results™ Quick Start utility generates COMLIB file definitions from
existing VISION:Results file definitions.

Input to the VISION:Results Quick Start utility is in the form of a sequential data
set, PDS member, or OS/390 , CA-Panvalet or CA-Librarian copybook containing
a single VISION:Results file definition. Output from the VISION:Results Quick
Start utility is in the form of a single PDS member containing the converted file
definition statements.

The RESULTS quick start utility can also run from VISION:Workbench for ISPF.
The IMPORT Option points you to a menu for selecting the quick start utility you
want to run. The subsequent panels prompt you for the information needed to run
the utility. Once the information is gathered, the utility is run immediately and the
output displayed for you to browse.

Flow Diagram
As shown in Figure 7-1 on page 7-2, the VISION:Results Quick Start utility uses the
following input data sets:

STEPLIB Required. STEPLIB must specify the COMLIB Release 4.5 load
library. The VISION:Builder installation load library containing
the parameter module M4PARAMS must also be available in the
STEPLIB concatenation.

SYSIN Required. SYSIN must specify an input file to be converted. It may
be specified in various ways:

■ A member in a PDS (the default in the supplied JCL).

■ A sequential data set.

■ A VISION:Results COPY statement for data from an OS/390
copybook (SYSCOPY DD statement).

■ A VISION:Results COPYP statement for data from a
CA-Panvalet library (PANDD1 DD statement).
VISION:Results Quick Start 7–1

Flow Diagram
Note: Input must be a valid VISION:Results file definition beginning with a
free-form FILE statement, followed by field definition statements.

The VISION:Results Quick Start utility produces the following output data sets:

■ A VISION:Results COPYL statement for data from a
CA-Librarian master file (MASTER DD statement).

■ As SYSIN in-stream data.

See DD Statement Overrides on page 7-5 for details on SYSIN data
from sources other than a PDS.

SYSCOPY Optional. If SYSIN is to contain a COPY statement for a copybook
from an OS/390 PDS member, then the SYSCOPY DD statement
must be provided, pointing to the OS/390 PDS copy library.

PANDD1 Optional. If SYSIN is to contain a COPYP statement for a copybook
from a CA-Panvalet library, then the PANDD1 DD statement must
be provided, pointing to the CA-Panvalet library.

MASTER Optional. If SYSIN is to contain a COPYL statement for a copybook
from a CA-Librarian master file, then the MASTER DD statement
must be provided, pointing to the CA-Librarian master file.

SYSPRINT The SYSPRINT data set contains a listing of the input statements,
as well as any diagnostic or informational messages.

SYS004 The SYS004 file contains the converted file definition.

Figure 7-1 VISION:Results Quick Start Flow Diagram

VISION:Results
Quick Start

STEPLIB

SYS004

SYSPRINT

 SYSIN

SYSCOPY
PANDD1
MASTER

(optional)
7–2 Getting Started Guide

Utility Execution
Utility Execution
The VISION:Results Quick Start utility is a batch program. It can be invoked online
under the Import Main Menu option of VISION:Workbench for ISPF. It can also be
run in batch mode by submitting the provided JCL member, BLXRSQ#3, in the
PDS data set (...PREP.JCLCNTL). This JCL contains an in-stream procedure,
followed by JCL statements to execute the procedure.

Figure 7-2 on page 7-3 contains a listing of the sample JCL that is provided to run
the VISION:Results Quick Start utility. Review the supplied JCL carefully. At a
minimum, you must make the following changes before submitting the JCL:

■ Supply a JOB card.

■ Supply appropriate variables for the procedure variables shown in the
following table.

Variable
Name Description

RGN Specify the region size for the utility execution. The default is 2
meg.

BLLOAD Specify the VISION:Builder installation load library, which
contains the M4PARAMS module.

DEFLIB Specify the data set name of a PDS into which the converted file
definition will be placed. The default is the Definition Processor
Definition library PDS.

MEMBER This is the output PDS member name that the converted definition
will use. It is suggested that the member name match the file name
of the file definition being converted.

RSLTLIB Specify the data set name of a PDS containing the VISION:Results
file definition to be converted.

RSLTDEF Specify the PDS member name of the VISION:Results file
definition to be converted.

//* MEMBER BLXRSQ#3 00010000
//*** 00020000
//* EXECUTE THE RESULTS QUICK START UTILITY * 00030000
//* ***** NOTE ***** * 00040000
//* THE SYSCOPY DD STATEMENT IS USED FOR MVS COPYBOOK LIBRARIES. * 00050000
//* THE PANDD1 DD STATEMENT IS USED FOR PANVALET COPYBOOK LIBRARIES. * 00060000
//* THE MASTER DD STATEMENT IS USED FOR LIBRARIAN COPYBOOK LIBRARIES * 00070000
//*** 00080000
//RESLTQS PROC RGN=2M, 00090000

Figure 7-2 Sample Execution JCL for the VISION:Results Quick Start Utility (Page 1
VISION:Results Quick Start 7–3

Utility Execution
// BLLOAD=, 00110000
// DEFLIB=, 00120000
// MEMBER=, 00130000
// RSLTLIB=, 00140000
// RSLTDEF= 00150000
//CONVRT EXEC PGM=RESULTQS,REGION=&RGN 00160000
//STEPLIB DD DISP=SHR,DSN=&CLLOAD 00170000
// DD DISP=SHR,DSN=&BLLOAD 00180000
//SYSPRINT DD SYSOUT=* 00190000
//*SYSCOPY DD DISP=SHR,DSN=USER.RESULTS.COPYLIB 00200000
//*PANDD1 DD DISP=SHR,DSN=USER.PANVALET.LIBRARY 00210000
//*MASTER DD DISP=SHR,DSN=USER.LIBR.MASTER 00220000
//SYS004 DD DISP=OLD,DSN=&DEFLIB(&MEMBER) 00230000
//SYSIN DD DISP=SHR,DSN=&RSLTLIB(&RSLTDEF) 00240000
// PEND 00250000
//*** 00260000
//* FOLLOWING IS A SAMPLE EXECUTION OF THIS PROCEDURE. BEFORE YOU * 00270000
//* RUN THIS PROCEDURE, SPECIFY: * 00280000
//* * 00290000
//* RGN - THE REGION SIZE. DEFAULT IS 2M. * 00300000
//* BLLOAD - THE NAME OF YOUR BUILDER LOAD LIBRARY. * 00320000
//* DEFLIB - THE LIBRARY(PDS) TO CONTAIN THE BUILDER DEFINITIONS. * 00330000
//* MEMBER - THE PDS MEMBER NAME FOR THE CONVERTED VISION:BUILDER * 00340000
//* FILE DEFINITION IN THE DEFINITION LIBRARY. * 00350000
//* RSLTLIB - THE PDS CONTAINING THE VISION:Results FILE * 00360000
//* DEFINITION SOURCE STATEMENTS. * 00370000
//* RSLTDEF - THE PDS MEMBER NAME OF THE INPUT VISION:Results * 00380000
//* FILE DEFINITION TO BE CONVERTED. * 00390000
//* * 00400000
//* *** N O T E *** * 00410000
//* * 00420000
//* THIS PROCEDURE ASSUMES INPUT FROM A PDS MEMBER. OPTIONALLY, IT * 00430000
//* MAY ALSO COME FROM A RESULTS COPY (MVS PDS), COPYP (PANVALET), * 00440000
//* OR COPYL (LIBRARIAN) STATEMENT. IF SO, YOU MUST UN-COMMENT THE * 00450000
//* APPROPRIATE SYSCOPY (MVS PDS), PANDD1 (PANVALET), OR MASTER * 00460000
//* (LIBRARIAN) DD STATEMENT IN THE PROCEDURE, SPECIFYING THE * 00470000
//* PROPER DATA SET NAME FOR THE LIBRARY USED. PLEASE REFER TO THE * 00480000
//* MANUAL FOR DETAILS IN SETTING UP COPY SUPPORT. * 00490000
//*** 00500000
//STEP01 EXEC RESLTQS,RGN=2M, 00510000
// BLLOAD='BUILDER.BL140.LOADLIB', 00530000
// DEFLIB='VISION.BUILDER.DEFLIB', 00540000
// MEMBER=FILENAME, 00550000
// RSLTLIB='VISION.RESULTS.FILEDEFS', 00560000
// RSLTDEF=FILENAME 00570000

Figure 7-2 Sample Execution JCL for the VISION:Results Quick Start Utility (Page 2
7–4 Getting Started Guide

Operational Characteristics
DD Statement Overrides
It is possible through the use of DD overrides to change the specifications for the
SYSIN data set from the default of a PDS member. This may be done in one of
several ways:

■ To specify a sequential data set as SYSIN input, override the SYSIN after
procedure invocation with the following JCL DD override:

//CONVRT.SYSIN DD DISP=SHR,DSN=USER.SEQ.FIELDEF

■ To specify the SYSIN item to be converted as in-stream data, override SYSIN
after the in-stream procedure invocation as follows:

//CONVRT.SYSIN DD *

(input to be converted)

■ To specify input using OS/390 copybook support, un-comment the SYSCOPY
DD statement in the procedure, and specify the data set name of a PDS
containing the VISION:Results file definition to be copied. Then override the
SYSIN DD statement with in-stream data as follows:

//CONVRT.SYSIN DD *
 COPY membername

■ To specify input using CA-Panvalet library copybook support, un-comment
the PANDD1 DD statement in the procedure, and specify the data set name of
the CA-Panvalet library containing the VISION:Results file definition to be
copied. Then override the SYSIN DD statement with in-stream data as follows:

//CONVRT.SYSIN DD *
 COPYP membername

■ To specify input using CA-Librarian copybook support, un-comment the
MASTER DD statement in the procedure, and specify the data set name of the
CA-Librarian master file containing the VISION:Results file definition to be
copied. Then override the SYSIN DD statement with in-stream data as follows:

//CONVRT.SYSIN DD *
 COPYL membername

Operational Characteristics

Supported Statement Types
The VISION:Results Quick Start utility processes all valid VISION:Results FILE
and FIELD definition free-form statements, as well as the COPY, COPYP, and
COPYL statements. Other valid VISION:Results processing and reporting
statements may be included in the input, but will be ignored unless they contain
errors. The VISION:Results FILE statement must be the first statement in the
definition.
VISION:Results Quick Start 7–5

Operational Characteristics
Converted File Definition
The VISION:Results Quick Start utility generates file definition statements of the
following types:

Note that all text fields in the L0, Ln, LX, and Dn generated statements are scanned
for the single quote ('), double quote ("), comma (,) and VISION:Builder system
delimiter (from M4PARAMS) characters. If encountered, they are changed to
either an underscore (_) or an “at” sign (@).

The generated FD statement is built from the VISION:Results FILE statement. The
file name used is the same as the VISION:Results file name, and should be used as
the “MEMBER” JCL PROC parameter of the PDS member name of the converted
definition. If a key length and location are specified in the VISION:Results
definition, it is saved and used to assign a key field to the converted FD.

If no key location is specified on the VISION:Results FILE statement, the first field
output in the converted FD is arbitrarily designated as the key, and a diagnostic
warning message is issued so that the converted FD may be inspected and
changed, if necessary. Record format conversion is accomplished where possible.

If the record format from the VISION:Results definition could not be translated, a
question mark (?) is inserted in the converted record format field, and a diagnostic
warning message is issued so that this field may be reviewed in the converted FD.

For record and block size, the VISION:Results characters per record and characters
per block fields are specified as the record size and buffer size fields, respectively,
unless the record format is FIXED or ISAM, in which case the record size is set and
a records per block is calculated for the FD statement.

The generated LS statement always has a name of SEGMENT1, since
VISION:Results file definitions represent flat, not hierarchical, files. It is also
assigned a segment number of 1 and a level number of 1.

The generated L0 statements always contain a generated field name of a 1-byte
prefix (the character F), followed by a 7-digit number that is incremented by one
for each field defined. The VISION:Results field name, which can be up to 50
characters in length, is used to generate an alternate name for the field (see LX
statement explanation below).

If the name is greater in length than the 30 bytes allowed for alternate names, only
the first 30 characters are used, and the entire 50-byte name is used as the field
description (see Dn statement explanation below). When this happens, the field
definition should be checked for duplicate names using the Duplicate Name Check
function of the VISION:Workbench for ISPF Import option.

■ FD (File Definition) ■ LS (Segment Definition)

■ L0 (Field Definition) ■ Ln (Field Column Heading
Definition)

■ LX (Alternate Name Definition) ■ Dn (Field Description Definition)
7–6 Getting Started Guide

Operational Characteristics
Field location, length, type, output edit length, and rounding information are
translated directly to the L0 statement from the VISION:Results definition. Edit
codes are translated as closely as possible. A field location of 4 question marks
(????) will be generated if the VISION:Results definition uses 5 bytes without a
leading zero to define the field location.

The generated Ln statements for column headings come from the VISION:Results
field definition column heading information, if present. If no column heading is
specified in the input VISION:Results definition, then the field name is used as the
column heading. Since column headings are to be specified in 16-byte lines, the
converted definition should be checked in case the 30-byte VISION:Results
column heading has been “broken up” inappropriately during the conversion.

The generated Dn statements (field descriptions) are based upon the
VISION:Results field name if it was greater than 30 bytes. If not, the column
heading is used as the field description.

The generated LX statements for alternate names are based upon the first 30
characters in the VISION:Results field name. Take note that if there is more than
one field that is greater than 30 bytes in the VISION:Results definition, there is the
possibility of duplicate names being generated in the converted FD. The
VISION:Workbench for ISPF Duplicate Name Check function should then be used
upon the converted FD.

Member Naming Conventions
The member name of the converted definition is always taken from the JCL
“MEMBER” PROC parameter. If this name exists in the output PDS, it will be
overwritten. For ease of use with the VISION:Workbench for ISPF, the PDS name
must always match the file name of the file definition being converted.

SYSPRINT Listing
The SYSPRINT listing contains the following information:

■ A listing of the VISION:Results input statements.

■ Error messages for any input statements that are invalid.

■ Informational or warning messages about the converted FD statements.

COPYP and COPYL Support
In order to use the COPYP (CA-Panvalet copy) and COPYL (CA-Librarian copy)
statements, additional setup must be done prior to execution of the
VISION:Results Quick Start utility. This setup involves linking the appropriate
interface routines with the VISION:Results Quick Start utility for CA-Panvalet or
CA-Librarian access.
VISION:Results Quick Start 7–7

Installing the VISION:Results Quick Start Routines (Optional)
Installing the VISION:Results Quick Start Routines (Optional)
If you plan to use the VISION:Results Quick Start utility to convert definitions that
are stored in a CA-Librarian or CA-Panvalet library, the appropriate interface
routine must first be link edited with the VISION:Results Quick Start utility. This
is accomplished by running one of the supplied JCL procedures in the WORKLIB
PDS.

Link Edit CA-Librarian Support
The PDS dataset (...PREP.JCLCNTL) contains member BLXRSQ#1 to link edit
support for accessing VISION:Results file definitions stored in a CA-Librarian
master file with the VISION:Results Quick Start utility. Figure 7-3 shows the JCL
procedure. Modify the procedure variables as appropriate and run the job to
activate this interface. A return code of 4, coupled with the warning message
IEW0461 can be ignored.

//* MEMBER BLXRSQ#1 00010000
//** 00020000
//* LINK LIBRARIAN INTERFACE MODULES WITH RESULTS QUICK START. * 00030000
//** 00040000
//LBLNK PROC LOADLIB=, 00050000
// LIBLOAD= 00060000
//LINK EXEC PGM=IEWL,REGION=1M,PARM='LIST,MAP,LET,NCAL' 00070000
//SYSLIB DD DUMMY 00080000
//SYSPRINT DD SYSOUT=* 00090000
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) 00100000
//LIBSYS DD DISP=SHR,DSN=&LIBLOAD 00110000
//SYSLMOD DD DISP=SHR,DSN=&LOADLIB 00120000
// PEND 00130000
//** 00140000
//* BEFORE SUBMITTING THIS JCL, YOU MUST SPECIFY THE FOLLOWING * 00150000
//* INFORMATION: * 00160000
//* * 00170000
//* LOADLIB - NAME OF YOUR VISION:BUILDER LOAD LIBRARY. * 00180000
//* LIBLOAD - NAME OF YOUR LIBRARIAN SYSTEM LOAD LIBRARY. * 00190000
//** 00200000
//LIBLINK EXEC LBLNK, 00210000
// LOADLIB='BUILDER.BL140.LOADLIB', 00220000
// LIBLOAD='LIBRARN.SYSTEM.LOADLIB' 00230000
//LINK.SYSLIN DD * 00240000
 INCLUDE LIBSYS(FAIRCLS) 00250000
 INCLUDE LIBSYS(FAIROPN) 00260000
 INCLUDE LIBSYS(FAIRREC) 00270000
 INCLUDE LIBSYS(FAIRMOD) 00280000
 INCLUDE LIBSYS(FAIRERR) 00290000
 INCLUDE LIBSYS(FAIRLOC) 00300000
 INCLUDE LIBSYS(FAIRNTE) 00310000
 INCLUDE LIBSYS(FAIRPNT) 00320000
 INCLUDE LIBSYS(FAIRSCAN) 00330000
 INCLUDE LIBSYS(FAIRSEC) 00340000
 INCLUDE SYSLMOD(DYL280LX) 00350000
 ENTRY DYL280L 00360000
 NAME DYL280L(R) 00370000

Figure 7-3 JCL to Link CA-Librarian Support
7–8 Getting Started Guide

Messages
Link Edit CA-Panvalet Support
The PDS dataset (...PREP.JCLCNTL) contains member BLXRSQ#2 to link edit
support for accessing VISION:Results file definitions stored in a CA-Panvalet
library with the VISION:Results Quick Start utility. Figure 7-4 shows the JCL
procedure. Modify the procedure variables as appropriate and run the job to
activate this interface.

Messages
Diagnostic and informational messages from the VISION:Results Quick Start
utility all begin with the characters DYL-. Diagnostic messages relating to errors in
the input VISION:Results file definition are documented in the VISION:Results
Messages and Codes Guide. Messages relating to the converted field definition are
listed below. The messages are placed in the SYSPRINT data set.

//* MEMBER BLXRSQ#2 00010000
//** 00020000
//* LINK PANVALET INTERFACE MODULES WITH RESULTS QUICK START. * 00030000
//** 00040000
//PNLNK PROC LOADLIB=, 00050000
// PANLOAD= 00060000
//LINK EXEC PGM=IEWL,REGION=1M,PARM='LIST,MAP,LET,NCAL' 00070000
//SYSLIB DD DUMMY 00080000
//SYSPRINT DD SYSOUT=* 00090000
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) 00100000
//LIBSYS DD DISP=SHR,DSN=&PANLOAD 00110000
//SYSLMOD DD DISP=SHR,DSN=&LOADLIB 00120000
// PEND 00130000
//** 00140000
//* BEFORE SUBMITTING THIS JCL, YOU MUST SPECIFY THE FOLLOWING * 00150000
//* INFORMATION: * 00160000
//* * 00170000
//* LOADLIB - NAME OF YOUR VISION:BUILDER LOAD LIBRARY. * 00180000
//* PANLOAD - NAME OF YOUR PANVALET SYSTEM LOAD LIBRARY. * 00190000
//** 00200000
//PANLINK EXEC PNLNK, 00210000
// LOADLIB='BUILDER.BL140.LOADLIB', 00220000
// PANLOAD='PANVALET.SYSTEM.LOADLIB' 00230000
//LINK.SYSLIN DD * 00240000
 INCLUDE LIBSYS(PAM) 00250000
 INCLUDE SYSLMOD(DYL280PX) 00260000
 ENTRY DYL280P 00270000
 NAME DYL280P(R) 00280000

Figure 7-4 JCL to Link CA-Panvalet Support

Message Explanation

DYL-1800 - If encountered,
the system delimiter of '*'
will be replaced with '*'.

Informational message. This indicates which
character will replace the system delimiter
character if it is encountered in a name field,
field description, or column heading.
VISION:Results Quick Start 7–9

Messages
DYL1801 - Unable to
convert 5-byte
VISION:Results record size
to VISION:Builder 4-byte
format.

Warning message. This message is generated
when a 5-byte VISION:Results record size is
encountered. VISION:Builder allows only 4
bytes for record size, so the record size field
should be checked in the converted definition.
Consider leaving the record size field in FD
blank, and using the buffer size field instead.

DYL1802 - Spanned record
type buffer size has been
estimated at 34K. Check the
FD.

Warning message. Spanned record support for
definitions is specified by having a buffer size of
greater than 32K, whereas spanned records in
VISION:Results use a field type character of S.
This field should be checked in the output FD
for accuracy.

DYL1803 - Unable to
convert the VISION:Results
record format. Check the
FD.

Warning message. The record format in the
VISION:Results field definition could not be
translated into VISION:Builder format. The
converted file definition should be checked for a
valid record format specification.

DYL1804 - Unable to load
module M4PARAMS. The
pound sign will be assumed
as the system delimiter.

Warning message. An OS/390 LOAD was
issued for the M4PARAMS load module, and
the module was not available in the STEPLIB
concatenation. Make sure the installation load
library has been made available in STEPLIB. The
utility continues to run by assuming the system
delimiter has not been changed from the default
of #.

DYL1805 - Unable to
convert 5-byte field location
for field ********. Check the
FD.

Warning message. VISION:Results definitions
allow for 5 bytes in the field location, and
VISION:Builder only allows 4 bytes. If the
VISION:Results uses all 5 bytes, and the first is
not a leading zero, the utility is unable to
convert the location. This should be checked in
the converted FD. The field name in question is
inserted into the message where the asterisks
appear.

DYL1806 - No key was
specified: field ******** was
arbitrarily designated as the
key. Check the FD.

Warning message. All definitions are required
to have one key designated as a key field for the
file, but VISION:Results does not allow a key
specification for certain file types. When this
occurs, the utility arbitrarily designates the first
field converted as the key field. The converted
FD should be checked and updated if this
designation is incorrect.

Message Explanation
7–10 Getting Started Guide

Return Codes
Return Codes
When run in batch, the VISION:Results Quick Start utility returns to the operating
system with one of the following return codes. These return codes appear as the
COND CODE value in the operating system JCL log. Return codes of 0 or 4 mean
that the utility continued executing until normal end of file on the SYSIN data set.
A return code of 8 indicates an error from which no recovery could be made and
the VISION:Results Quick Start utility terminated without creating a converted
field definition.

DYL1807 - The key
information supplied did
not match a defined field.
Check the FD.

Warning message. The VISION:Results
definition did have a key field length and
location specified, but the utility was unable to
match this with a defined field. The converted
FD has not been designated with a key field.
Check the converted FD and specify a key field
with VISION:Workbench for ISPF.

DYL1808 - Key field ********
was designated as the key
based upon the key
information in the
VISION:Results FD.

Informational message. The VISION:Results
definition did have a key field length and
location specified, and the utility was able to
match this with a defined field. The key field
name is replaced in the message where the
asterisks occur.

Message Explanation

Return
Code Explanation

0 Normal return code. No errors were encountered, and only
informational messages were issued. A converted file definition in
VISION:Builder format has been created.

4 Warning return code. One or more warning messages were issued
during definition conversion. A converted file definition has been
created, but should be closely checked for accuracy using
VISION:Workbench for ISPF. The messages in the SYSPRINT listing
indicate which items should be checked.

8 Error return code. Errors were detected in the syntax or content of
the input VISION:Results FILE definition statements. The statements
were not converted. Correct the errors on input as indicated by the
messages in the SYSPRINT listing, and rerun the VISION:Results
Quick Start utility.
VISION:Results Quick Start 7–11

Return Codes
7–12 Getting Started Guide

Chapter
8 V
ISION:Inquiry Quick Start
The VISION:Inquiry™ Quick Start utility generates COMLIB file definitions from
existing VISION:Inquiry MAPGENs. During the utility processing, each
VISION:Inquiry map that is processed becomes a separate file definition. The
VISION:Inquiry map information is converted into file, segment, and field
information in the file definition.

Note: If an existing member name is specified, the existing member is replaced
when the new definition is saved. If a new member name is specified, then a new
member is created.

The VISION:Inquiry Quick Start utility can be invoked either as an import function
within the Definition Processor or as a stand-alone batch execution. The remainder
of this section describes the use of VISION:Inquiry Quick Start as a batch utility.

Multiple file definitions can be generated in a single VISION:Inquiry Quick Start
batch execution. Each generated file definition is stored as a separate member in
the indicated source definition library. The specified file name is used as the
member name when the generated definition is saved in the source definition
library.

Once a file definition has been created, any additional information that is needed
can be added using the VISION:Workbench for ISPF.

The INQUIRY quick start utility can also run from VISION:Workbench for ISPF.
The IMPORT Option points you to a menu for selecting the quick start utility you
want to run. The subsequent panels prompt you for the information needed to run
the utility. Once the information is gathered, the utility is run immediately and the
output displayed for you to browse.
VISION:Inquiry Quick Start 8–1

Flow Diagram
Flow Diagram

As shown in Figure 8-1, Quick Start uses the following three input data sets:

VISION:Inquiry Quick Start produces the following two output files:

Figure 8-1 VISION:Inquiry Quick Start Flow Diagram

STEPLIB Specifies the VISION:Builder Release 14.0 load library.

SYSIN Specifies the appropriate VISION:Inquiry Quick Start control
statements.

SYSUT1 Contains the unloaded form of the VISION:Inquiry system
database. See the VISION:Inquiry User’s Guide for information on
how to create the unloaded form of the system database.

SYSPRINT Contains a summary report on the file definition generation
process.

SYS004 Generated file definitions are written to the partitioned data set
pointed to by the ddname SYS004. This must be a partitioned data
set.

VISION:Inquiry

Quick Start

STEPLIB

SYS004

SYSPRINT

SYSUT1

 SYSIN
8–2 Getting Started Guide

Utility Execution
Utility Execution
Figure 8-2 contains the JCL required to execute VISION:Inquiry Quick Start. This
JCL contains an in-stream procedure followed by JCL statements to execute the
procedure, as well as sample control statements. The JCL may be found in the PDS
data set (...PREP.JCLCNTL) member BLXINQ#1.

At a minimum, you must make the following changes before submitting this JCL:

■ Supply a JOB card.

■ Supply values for the procedure variables detailed in the table on page 8-3.

■ Provide a DD statement for SYSIN. This data set contains the required
VISION:Inquiry Quick Start input control statements which are used to control
the generation of file definitions. See FILEGEN Control Statement on page 8-4
for detailed information on these control statements.

■ To conform to your shop standards, additional modifications may be
necessary.

Note: If the SYSIN data set is specified as a DUMMY or if no FILEGEN statements
are specified in the input stream (empty SYSIN data set), all MAPGENs in the
unloaded system database will be converted in one invocation of the
VISION:Inquiry Quick Start utility.

Variable Name Description

BLLOAD Specifies the name of the VISION:Builder Release 14.0 load
library.

ULSYSDB Specify the name of your VISION:Inquiry unloaded system
database.

DEFLIB Specify the name of your definition library.

//* MEMBER BLXINQ#1 00010000
//*** 00020000
//* UTILITY TO CONVERT VISION:Inquiry FILE DEFINITIONS INTO * 00030000
//* VISION:BUILDER OR VISION:INFORM FORMAT FILE DEFINITIONS. * 00040000
//* THE VISION:Inquiry FILE DEFINITIONS MUST COME FROM AN * 00050000
//* VISION:Inquiry UNLOADED SYSTEM DATABASE FILE. SEE YOUR * 00060000
//* VISION:Inquiry TECHNICAL REFERENCE MANUAL FOR INFORMATION ON * 00070000
//* HOW TO CREATE AN UNLOADED COPY OF THE SYSTEM DATABASE. * 00080000
//* * 00090000
//* THIS UTILITY MAY ALSO BE INVOKED UNDER TSO/ISPF USING THE * 00100000
//* VISION:INFORM DEFINITION PROCESSOR IMPORT FUNCTION. * 00110000
//*** 00120000
//INQRYQS PROC RGN=2M, 00130000
// BLLOAD=, 00140000
// ULSYSDB=, 00150000

Figure 8-2 Sample Execution JCL for the VISION:Inquiry Quick Start Utility (Page 1
of 2)
VISION:Inquiry Quick Start 8–3

FILEGEN Control Statement
FILEGEN Control Statement
The VISION:Inquiry Quick Start utility uses the following control statement as
input:

// DEFLIB= 00160000
//INQRYQS EXEC PGM=INQRYQS,REGION=&RGN 00170000
//STEPLIB DD DISP=SHR,DSN=&BLLOAD 00180000
//SYSPRINT DD SYSOUT=* 00200000
//SYSUT1 DD DISP=SHR,DSN=&ULSYSDB 00210000
//SYS004 DD DISP=OLD,DSN=&DEFLIB 00220000
// PEND 00230000
//*** 00240000
//* FOLLOWING IS A SAMPLE EXECUTION OF THIS PROCEDURE. BEFORE YOU * 00250000
//* RUN THIS PROCEDURE, SPECIFY: * 00260000
//* * 00270000
//* RGN - THE REGION SIZE; DEFAULT IS 2M. * 00280000
//* BLLOAD - THE BUILDER LOAD LIBRARY. * 00290000
//* ULSYSDB - THE UNLOADED VISION:Inquiry SYSTEM DATABASE FILE. * 00300000
//* DEFLIB - THE VISION:INFORM DEFINITION LIBRARY. * 00310000
//*** 00320000
//STEP01 EXEC INQRYQS,RGN=2M, 00330000
// BLLOAD='BUILDER.BL135.LOADLIB', 00340000
// ULSYSDB='VISION.INQUIRY.UNLOADED.SYSDBASE', 00350000
// DEFLIB='VISION.BUILDER.DEFLIB' 00360000
//SYSIN DD * 00370000
 FILEGEN NAME=VSHPLANT,FLDPREFX=PLT 00380000
 FILEGEN NAME=SALARIES,FLDPREFX=SAL 00390000

Figure 8-2 Sample Execution JCL for the VISION:Inquiry Quick Start Utility (Page 2
of 2)

FILEGEN The FILEGEN statement triggers the start of a new file definition.
The NAME parameter specified on the FILEGEN statement is used
as both the file name and the member name when the generated
file definition is saved.
8–4 Getting Started Guide

FILEGEN Control Statement
Coding Rules
When writing VISION:Inquiry Quick Start control statements, the following rules
must be observed:

■ Each statement must be on a single line and must begin with the FILEGEN
command name.

■ Each control statement may contain keyword parameters. Keyword
parameters can be specified in any order and must be separated by commas.
Embedded blanks are not allowed between parameters.

■ The NAME keyword is required on each statement. All other keywords are
optional.

■ Blank lines within the SYSIN file are not accepted.

■ Columns 1 through 71 of the control statement are scanned.

■ Columns 72 through 80 are ignored.

Syntax
Note: If an existing member name is specified, the existing member is replaced. If
a new member name is specified, a new member is created.

FILEGEN Required. FILEGEN is a control statement command. It
identifies the control statement type. The FILEGEN control
statement triggers the start of a new file definition.

NAME Required. The NAME parameter specifies the name of the
MAPGEN that is being converted. A map name can be 1–8
characters. If the corresponding MAPGEN is not found in the
unloaded VISION:Inquiry system database, a message is
printed indicating that no conversion took place.

When the generated file definition is saved, the file name is also
used as the member name unless the NEWNAME keyword is
specified (see below).

BUFFSIZE Optional. The BUFFSIZE parameter defines the size of the
buffer needed to process a logical record for IMS. Enter a
number from 1 to 32760. Multiples of 1024 can be entered as
nnnnK where nnnn is a number between 1 to 9999. This
parameter is only used for IMS definitions and will be ignored
for all other file definition types.
VISION:Inquiry Quick Start 8–5

Conversion Rules
Conversion Rules

Generated File Definition
This utility generates a file definition that can be edited and validated by the
VISION:Workbench for ISPF.

FLDPREFX Optional. The FLDPREFX parameter specifies the 1 to
3-character prefix for generating primary field names in the file
definition. Primary field names are required in a file definition
and must be assigned a unique 1- to 8-character name. Since
VISION:Inquiry field names can be longer than 8 characters,
Quick Start automatically generates a unique 8-character
primary field using the FLDPREFX value followed by a
generated field number.

If the FLDPREFX parameter is omitted, the default prefix is F
and the generated primary field names have the format
Fnnnnnnn where nnnnnnn is a number from 0000001 to
9999999. See Field Name Generation on page 8-7 for more
information.

NEWNAME Optional. The NEWNAME parameter specifies a 1–8 character
name which becomes the name of the converted file definition.
This name is used as both the file definition name and the
member name in the definition library. If this keyword is
omitted, the existing name as specified using the NAME
keyword is used as the file definition name and member name.

File information The Glossary specification may be added as
appropriate and the buffer size specification may need
to be adjusted for IMS files.

Segment information Additional segment information such as segment (row)
order and suppress duplication may be provided as
needed. Segment key fields will have been identified
during the conversion process based upon the
information contained in the MAPGEN. If it is
appropriate for a segment to have more than one key
field specified, the key field specifications may need to
be adjusted. Segment count fields will have been
identified for VSAM hierarchical files as appropriate.
8–6 Getting Started Guide

Messages
Field Name Generation
All fields within a file definition must be assigned a unique 1–8 character name.
This name is referred to as the primary field name.

When building a file definition from a VISION:Inquiry MAPGEN, a unique 1–8
character primary field name must be assigned to each field. Since VISION:Inquiry
field names can be longer than 8 characters, VISION:Inquiry Quick Start
automatically generates a unique primary field name using the FLDPREFX
parameter value on the FILEGEN statement followed by a generated field number.
If the FLDPREFX parameter is omitted, the default prefix is F and the generated
primary field names have the format Fnnnnnnn where nnnnnnn is a number from
0000001 to 9999999. The original name is used as the alternate name in this case.

Once the file definition has been created, it can be refined using
VISION:Workbench for ISPF. Column heading information may be added and
other changes applied as appropriate.

Messages
The following table lists the VISION:Inquiry Quick Start utility messages and their
explanations. The Return Code for each message resulting in a return code greater
than 0 is listed with the explanation. The question mark (?) in the messages below
represents a parameter which will be substituted when the message is issued.

Field information Primary field name assignments can be modified if
wanted (see below). Additional field information such
as rounding, editing, column headings, and automatic
table lookup results should be provided as needed.
Field description information will be filled in from the
description information in the VISION:Inquiry
MAPGEN. Since VISION:Inquiry MAPGENs do not
contain column heading or equivalent information, no
column heading information will be present in the
converted file definition.

Message Explanation

? is an Invalid keyword. Identifies the keyword of a FILEGEN statement
that is invalid. RC=16

? Statements generated. Information message indicating the number of
statements generated while converting a file
definition.

Can’t open file for ? Identifies a map for which the SYS004 file
cannot be opened. RC=20

Can’t open SYS004 file. RC=20
VISION:Inquiry Quick Start 8–7

Messages
Can’t open SYSIN file. RC=20

Can’t open SYSUT1 file. RC=20

Conversion aborted; Control
Statement errors.

One or more errors where encountered while
scanning the FILEGN statements. RC=16

Converting File Definition ? Information message identifying the file
definition being converted.

Definition ? is for Database
Type ?

The Inquiry definition is for a database type
that is not supported by
VISION:Builder/VISION:Inform®. RC=4

FIELD DESC. record out of
sequence.

A FIELD DESCRIPTION record was
encountered when not expected. RC=8

Field not found for
Description ?

The related field was not found for a field
description record. RC=8

FIELD record out of
sequence.

A FIELD record was encountered when not
expected. RC=8

File ? present but not
selected.

Information message indicating that the
specified definition was present on the
unloaded database file, but was not selected on
any FILEGEN statement.

File Definition ? not
converted.

Message indicating that the specified definition
was not converted, probably because the name
keyword on the FILEGEN statement did not
match any definition in the unloaded system
database. RC=4

Insufficient memory. There was insufficient memory available to
complete the conversion of a definition. RC=12

MAP ? has too many
segments.

The specified definition has more than 100
segments. RC=8

MAP ? Segment ? has too
many fields.

The specified segment of the definition has
more than 1000 fields. RC=8

MAPGEN Descriptor record
out of sequence.

A MAPGEN Descriptor record was
encountered when not expected. RC=8

Processing completed,
Return code = ?

Information message indicating that the
conversion program has terminated with the
specified return code.

RECORD record out of
sequence.

A RECORD information record was
encountered when not expected. RC=8

Message Explanation <$paranum
8–8 Getting Started Guide

Return Codes
Return Codes
The VISION:Inquiry Quick Start utility generates the following return codes:

Required NAME
keyword/operand not
found.

A FILEGEN statement was specified without
the required NAME keyword or no operand
was provided for the keyword. RC=16

Segment not found for field ? The corresponding segment was not found for
a field record. RC=8

SEGMENT record out of
sequence.

A SEGMENT record was encountered when
not expected. RC=8

Statement is not a FILEGEN
statement.

A control statement was read that was not a
FILEGEN statement. RC=16

Statement syntax error. A FILEGEN statement syntax was in error. No
operand following a keyword; keyword not
followed by an equal sign; RC=16

This Database Type is not
supported by
VISION:Builder/
VISION:Inform.

Follow-on message to message “Definition ? is
for Database Type ?”. RC=4

Message Explanation <$paranum

Return
Code Explanation

 0 Successful completion. All selected definitions were converted.

 4 The definition for one or more FILEGEN statements was not
converted. See the print output listing for more information about
which conversions completed successfully and which definitions did
not.

 8 The records for a selected definition in the VISION:Inquiry unloaded
system database were not in the expected sequence or an internal
limit was exceeded. The conversion in progress at the time was
terminated and conversion of the next definition (if any) was
attempted. One or more definitions may have been converted
successfully. See the print output listing for detailed information
regarding the reason.

12 Insufficient memory was available to complete a conversion. One or
more definitions may have been converted successfully. See the print
output listing for more information.
VISION:Inquiry Quick Start 8–9

Return Codes
16 A syntax error was found on one or more FILEGEN statements.
Processing was terminated after all FILEGEN statements were read.
No conversion was attempted.

20 The SYSIN, SYSUT1, or SYS004 file did not open successfully.
Processing was terminated immediately. See the print output listing
for more information.

24 The SYSPRINT file did not open successfully. Processing was
terminated immediately.

Return
Code Explanation <$paranum
8–10 Getting Started Guide

Appendix
A A
SL Examples
Code

; ASL Coding Example
;
CONTROL TERM, DB2 D61A INM4CALL
;
FILE REPO
FILE MASTER INPUT, NAME TEMPL, KEYS NONE
;
; END OF ASL RUN CONTROL
MAIN: PROC INFO 'Main Procedure'
;
BIRTHDAY: FIELD D 4
FEEDBACK: FIELD C 12
NAME: FIELD V 22
;
; Combine Elements of Name into One Field
;
COMBINE LASTNAME, ',' STORE T.NAME
COMBINE T.NAME, FIRSTNME, MIDINIT BLANKS 1 STORE T.NAME

;
; Convert Birth Date to a Lilian Date using Picture 'YYYY-MM-DD'
;
CALL CEEDAYS USING BRTHDATE, 'YYYY-MM-DD',

T.BIRTHDAY, T.FEEDBACK
;
REPORT EMPNO, T.NAME, T.BIRTHDAY
TITLE 'Report Showing Birth Dates of all Employees'
ORDER BY LASTNAME, FIRSTNME, MIDINIT
FORMAT DATEFMT DATE, HEADINGS NAME, WIDTH 80
ITEM T.BIRTHDAY PIC P'Wwwwwwwwwz, Mmm DD, YYYY'

END REPORT
;
END PROC
;
REPORT F.TODAY, F.TODAYX, F.ISDATE, F.DATE,

F.JULIAN, F.JULANX, F.LILIAN,
TYPE EOF

TITLE 'Report Showing Use of All Date Flags'
FORMAT HEADINGS NAME

END REPORT
;

ASL Examples A–1

Reports
Reports

SEP 12, 2000 Report Showing Birth Dates of all Employees PAGE 1
--
EMPNO NAME BIRTHDAY

--
000150 ADAMSON, BRUCE Saturday, May 17, 1947
200340 ALONZO, ROY R Monday, May 17, 1926
000200 BROWN, DAVID Thursday, May 29, 1941
000050 GEYER, JOHN B Tuesday, Sep 15, 1925
000340 GOUNOT, JASON R Monday, May 17, 1926
000010 HAAS, CHRISTINE I Monday, Aug 14, 1933
200010 HEMMINGER, DIAN J Monday, Aug 14, 1933
000090 HENDERSON, EILEEN W Thursday, May 15, 1941
000230 JEFFERSON, JAMES J Thursday, May 30, 1935
200220 JOHN, REBA K Friday, Mar 19, 1948
000260 JOHNSON, SYBIL V Monday, Oct 05, 1936
000210 JONES, WILLIAM T Monday, Feb 23, 1953
000030 KWAN, SALLY A Sunday, May 11, 1941
000330 LEE, WING Friday, Jul 18, 1941
000110 LUCCHESI, VINCENZO G Tuesday, Nov 05, 1929
000220 LUTZ, JENNIFER K Friday, Mar 19, 1948
000240 MARINO, SALVATORE M Wednesday, Mar 31, 1954
000320 MEHTA, RAMLAL V Thursday, Aug 11, 1932
200240 MONTEVERDE, ROBERT M Wednesday, Mar 31, 1954
200140 NATZ, KIM N Saturday, Jan 19, 1946
000140 NICHOLLS, HEATHER A Saturday, Jan 19, 1946
000120 O'CONNELL, SEAN Sunday, Oct 18, 1942
200120 ORLANDO, GREG Sunday, Oct 18, 1942
000290 PARKER, JOHN R Tuesday, Jul 09, 1946
000270 PEREZ, MARIA L Tuesday, May 26, 1953
000160 PIANKA, ELIZABETH R Tuesday, Apr 12, 1955
000070 PULASKI, EVA D Tuesday, May 26, 1953
000130 QUINTANA, DOLORES M Tuesday, Sep 15, 1925
000280 SCHNEIDER, ETHEL R Saturday, Mar 28, 1936
200280 SCHWARTZ, EILEEN R Saturday, Mar 28, 1936
000180 SCOUTTEN, MARILYN S Monday, Feb 21, 1949
000310 SETRIGHT, MAUDE F Tuesday, Apr 21, 1931
000250 SMITH, DANIEL S Sunday, Nov 12, 1939
000300 SMITH, PHILIP X Tuesday, Oct 27, 1936
000100 SPENSER, THEODORE Q Tuesday, Dec 18, 1956
200310 SPRINGER, MICHELLE F Tuesday, Apr 21, 1931
000060 STERN, IRVING F Saturday, Jul 07, 1945
000020 THOMPSON, MICHAEL L Monday, Feb 02, 1948
000190 WALKER, JAMES H Wednesday, Jun 25, 1952
200330 WONG, HELENA Friday, Jul 18, 1941
200170 YAMAMOTO, KIYOSHI Friday, Jan 05, 1951
000170 YOSHIMURA, MASATOSHI J Friday, Jan 05, 1951

09/12/00 Report Showing Use of All Date Flags PAGE 1
--
TODAY TODAYX ISDATE DATE JULIAN JULANX LILIAN

--
091200 09122000 20000912 SEP 12, 2000 00256 2000256 09/12/2000
A–2 Getting Started Guide

Listing
Listing

SEP 15, 2000 17.18.13 PAGE 1
**
* VISION:Builder 4400 (OS/390 - 14.0) *
* COPYRIGHT 2001 *
* COMPUTER ASSOCIATES INTERNATIONAL, INC. *
**

VISION:Builder 14.0 Dev. ENABLED FOR IBM LANGUAGE ENVIRONMENT BUILD STAMP = 100249,20:27:02.

==
= =
= I N S T A L L A T I O N P A R A M E T E R S (M 4 P A R A M S , M A R K L I B P) =
= =
= SYSTEM DELIMITER: # PAGE HEIGHT: 66 M4LIST WIDTH: 132 DEF WIDTH OF PAGE: 0 =
= =
= AUTO GRAND: N HEADING CHAR: - SUBTITLE REPEAT: N INVALID FIELD: * =
= =
= MISSING FIELD: - NON-EDIT FIELD: + PERCENT CHAR: % LEFT SEPARATOR: (=
= =
= RIGHT SEPARATOR:) SINGLE SEPARATOR: , SOURCE SPACING: 1 PRINT MESSAGES: Y =
= =
= CONSOLE MESSAGES: N M4REPO BLOCKSIZE: 4,096 INPUT I/O BUFFERS: 2 OUTPUT I/O BUFFERS: 1 =
= =
= SNGL-STEP STORAGE: 8,192 SNGL-STEP SORTSIZE: 524,288 DIGIT SELECT CHAR: 9 ZERO SUPPRESS CHAR: Z =
= =
= CURRENCY CHAR: $ PLUS CHAR: + MINUS CHAR: - CHECK PROTECT CHAR: * =
= =
= DECIMAL CHAR: . GROUPING CHAR: , PRIMARY PLOT CHAR: X SECONDARY PLOT CHAR:* =
= =
= FIT PLOT CHAR: . HORIZONTAL AXIS: _ HORIZONTAL HASH: | VERTICAL AXIS: | =
= =
= VERTICAL HASH: - MINUTES/HOUR: 60 SECONDS/MINUTE: 60 TIME DELIMITER: HH:MM:SS =
= =
= DATE FORMAT: MMM DD, YYYY TODAY FORMAT+DELIM: MM/DD/YY ISDATE DELIMITER: YYYY-MM-DD JULIAN DELIMITER: YY.DDD =
= =
= SORT PROGRAM CODE: 2 MINCORE VALUE: 12 K ALT M4LIST WIDTH: 132 ALT DEF W/OF PAGE: 0 =
= =
= MAX LINES OF TRACE: 1,024 ITEM TRACKING: 0 SUPPRESS NDS REPT?: N DEFAULT MAXGETMN: 1,024 K =
= =
= CONDITION CODE 1: 0 CONDITION CODE 2: 4 CONDITION CODE 3: 0 CONDITION CODE 4: 16 =
= =
= ISAM INDEX INCORE: N M4LIB BLKG FACTOR: 0 M4LIB RESERVE: 0 M4LIB COMPONENT: C4.5 B/V =
= =
= DEFAULT F/P AMODE: 31 M4LIB COMPRESSION?: Y M4LIB COMPRESS MIN: 507 =
= =
==

SEP 15, 2000 17.18.13 PAGE 2

CONTROL TERM 1
FILE MASTER INPUT, NAME ALL80, KEYS NONE, IO_PLUGIN M4PDSIN 2
FILE SUBF1 NAME SUBOUT1 3

==
= =
= F I L E S U M M A R Y =
= =
= JOBNAME: REDJO04P STEPNAME: M4RUN =
= =
= FILE NAME: M4OLD DSNAME: REDJO04.CLIST =
= FILE NAME: M4SUBF1 DSNAME: REDJO04.REDJO04P.JOB03283.D0000104.? =
= FILE NAME: M4LIB DSNAME: REDJO04.DEVEL2.M4LIB =
= =
==

SEP 15, 2000 17.18.13 PAGE 3

* PROC NAME - MAIN *
* INPUT STREAM PROCEDURE *

MAIN: PROC 4
EXTRACT FILE SUBOUT1, ENTIRE O 5

END PROC 6

SEP 15, 2000 17.18.13 PAGE 4
** MK4UI06 TYPE 0 USER I/O MODULE M4PDSIN SUCCESSFULLY LOADED VIA LOAD (SVC 8). *****
ASL Examples A–3

Listing
SEP 15, 2000 17.18.13 PAGE 5
** MK4W204 TYPE 0 NUMBER OF MESSAGES PRINTED IS 1. *****

M4OLD - 7991 RECORDS INPUT
M4SUBF1 - 7991 RECORDS OUTPUT
M4INPUT - 6 RECORDS INPUT
M4LIST - 78 RECORDS OUTPUT
15 TRACKS ASSIGNED TO M4LIB -- 6 TRACKS NOT FULL. LIBRARY DIRECTORY BLOCKING FACTOR IS 694.

** MK4W209 TYPE 0 1019144 BYTES OF MAIN STORAGE UNUSED DURING DECODING PHASE *****
1019448 BYTES OF MAIN STORAGE UNUSED DURING COMPILATION PHASE
987136 BYTES OF MAIN STORAGE UNUSED DURING PROCESSING PHASE
A–4 Getting Started Guide

Index
Symbols

$COBOL, 5-7

$ECOBOL, 5-7

A

ASL (Advanced Syntax Language) feature, 2-1

ASL EXTRACT statement
four variations of, 2-11

ASL report statements, 2-8

ASL run control statements, 2-3

ASL statements, 2-8

B

benefits, 1-3

books, 1-6
discontinued books, 1-9

BUFFSIZE, 5-9, 6-6

C

CA-Librarian support
VISION:Results, 7-8

CA-Panvalet support
VISION:Results, 7-9

COBOL and VISION:Builder, 4-7

COBOL Quick Start, 5-1
coding rules, 5-7

conversion rules, 5-11
execute, 5-3
flow diagram, 5-2
generated COMLIB file def, 5-11
JCL, 5-3

column heading specifications, 5-12

COLUMN name, 2-10

COMLIB
Generating field info, 6-10

COMLIB Library Utilities, 1-1

contacting Computer Associates, web page, 1-13

COPY statement, 2-6

COPYCOBOL, 5-10

COPYLCOBOL, 5-10

COPYPCOBOL, 5-10

courses for VISION:Builder, 1-11

CREATOR, 6-8

customer-requested enhancements, 2-15

D

data field and record processing, 4-3

DATEFLD, 6-7

DB2 Quick Start, 6-1
coding rules, 6-5
conversion rules, 6-9
convert fields to COMLIB, 6-10
execute, 6-2
flow diagram, 6-2
Index–1

generated COMLIB file def, 6-9
JCL, 6-2

DB2CNTL, 6-4, 6-5

DB2PLAN, 6-5

DB2SYS, 6-5

DBRM, 6-2

definition processing, 4-6

delimited data output enhancements, 2-16

DESCRIPT, 6-7

discontinued books, 1-9

documentation, 1-6
discontinued books, 1-9

E

educational and professional services, 1-11

END statement, 2-10

enhacements
HTML primary document name change, 2-18

enhancements, 2-1
ASL report statements, 2-8
ASL run control statements, 2-3
customer-requested, 2-15
delimited data output, 2-16
extracted data files following the sort, 2-14
HFS output for HTML report, 2-18
long field names, 2-13
no limit on extracted data files, 2-13
PL/I-like varchar output, 2-15

environment, 1-4

extended subfiles, 2-14

external column name, 6-10

extracted data files
following the sort, 2-14
no limit, 2-13

F

features, 1-2

file manipulation, 4-4

FILE MASTER statements, 2-3

FILE statements
additional keywords, 2-4

FILEGEN, 5-7, 5-8, 6-4, 6-6

FIXED keyword, 2-12

fixed-form-syntax statements, 2-1

Flat file, 1-1

FLDNAME, 6-7

FLDPREFX, 5-9, 6-6

functional specifications, 2-2

G

general report semantics, 2-10

H

HEADING, 6-7

HFS output for HTML report, 2-18

HTML primary document name change, 2-18

I

INCLUDE statement, 2-12

installation instructions
VISION:Results Quick Start, 7-8

ITEM statement, 2-10

J

JCL
COBOL Quick Start, 5-3
DB2 Quick Start, 6-2
VISION:Inquiry Quick Start, 8-3
VISION:Results Quick Start, 7-3

K

KEYNAME parameter, 2-7
Index–2 Getting Started Guide

L

LEVEL, 5-10, 6-8

LOGREL, 6-7

long field names, 2-1, 2-13

LONGNAME, 6-7

N

NAME, 5-8, 5-9, 6-6, 6-8

NEWPAGE, 6-4, 6-9

NUMBER, 5-10, 6-8

P

performance tuning, 4-7

PL/I-like varchar output, 2-15

PRINT, 6-8

PROC statement, 2-12

R

RECBLK, 5-8

RECSIZE, 5-8

Report Blocks, 2-8

REPORT statement
built-in functions, 2-9

reporting from special data files, 4-2

requirements, 1-4

S

SECTION statement, 2-10

SEGMENT, 5-7, 5-9, 6-4, 6-8

SEGMENT and SSA clause, 2-7

SEGMENT and WHERE clause, 2-7

specialized report formats, 4-1

SQL clause, 2-6

STEPLIB, 5-2, 6-2

SYS004, 5-2, 6-2

SYSCOPY, 5-2

SYSIN, 5-2, 6-2

SYSPRINT, 5-2, 6-2

T

TABLE, 6-8

table processing, 4-7

technical support, contacting Computer Associates,
1-13

TYPE, 5-8

V

VISION:Builder
ASL Run Control statements, 2-3
conventions for specifying syntax of commands
and functions, 2-2
enhancements, 2-1

VISION:Builder Engine, 1-1

VISION:Builder system, 1-1

VISION:Inquiry Quick Start, 8-1
coding rules, 8-5
control statement, 8-4
execute, 8-3
JCL, 8-3
VISION:Inform field name generation, 8-7

VISION:Results Quick Start, 7-1
COPYP and COPYL support, 7-7
DD statement overrides, 7-5
flow diagram, 7-1
installation, 7-8
JCL, 7-3
member naming conventions, 7-7
messages, 7-9
return codes, 7-11
support statement types, 7-5
SYSPRINT listing, 7-7

VISION:Workbench for DOS, 1-1

VISION:Workbench for ISPF, 1-1
Index–3

W

web page
Computer Associates, 1-13
Index–4 Getting Started Guide

	Getting Started Guide
	Contents
	Chapter 1: Introduction
	Features
	Efficient Database Access
	Wide Variety of Report Output Formats
	Migrating Data
	Meta Data Repository System
	Verifying the Data
	Handling Complex Applications Easily
	A Computer Associates Solution

	Benefits
	VISION:Builder Requirements
	Environment
	IBM Operating Systems Supported
	Available Interfaces

	SMP/E Installation Specifications
	CA LMP Licensing Specifications
	Documentation
	Installing Online Documentation and the Acrobat Reader
	Viewing Online Documentation

	Educational and Professional Services
	Contacting Total License Care (TLC)
	Contacting Computer Associates

	Chapter 2: Enhancements and Modifications
	General Enhancements
	ASL Run Control Statements
	SQL Clause on FILE Statement
	SEGMENT and WHERE Clause on FILE Statement
	SEGMENT and SSA Clause on FILE Statement

	ASL Report Statements
	Built-in Report Functions
	Sectional Reporting Extensions
	General Report Semantics

	ASL EXTRACT Statement
	Additional ASL Procedure Statements
	Long Field Names
	Remove Limit of 10 Extracted Data Files (Subfiles)
	Extended Subfile Usage of File Name Entry (Cols. 44-51)

	Extracted Data Files Following the Sort

	Customer-Requested Enhancements
	PL/I-Like Varchar Output
	Delimited Data Output Enhancements
	HTML Primary Document Name Change
	HFS Output for HTML Report

	Chapter 3: Installing VISION:Builder
	Installation Tasks

	Chapter 4: VISION:Builder Quick Reference
	Specialized Report Formats
	Reporting from Special Data Files
	Data Field and Record Processing
	File Manipulation
	Definition Processing
	COBOL and VISION:Builder
	Table Processing
	Performance Tuning

	Chapter 5: COBOL Quick Start
	Flow Diagram
	Utility Execution
	Using CA-Panvalet and CA-Librarian COBOL Copybooks
	CA-Panvalet Interface
	CA-Librarian Interface

	Control Statements
	Coding Rules
	FILEGEN Control Statement
	Statement Syntax

	SEGMENT Control Statement
	Statement Syntax
	Processing Notes

	$COBOL and $ECOBOL Control Statements
	Example of Syntax and Use

	Conversion Rules
	Generated COMLIB File Definition
	COMLIB Field Name Generation
	Unsupported COBOL Specifications

	Chapter 6: DB2 Quick Start
	Flow Diagram
	Utility Execution
	Control Statements
	Coding Rules
	DB2CNTL Control Statement
	Statement Syntax

	FILEGEN Control Statement
	Statement Syntax

	SEGMENT Control Statement
	Statement Syntax

	NEWPAGE Control Statement
	Statement Syntax

	Conversion Rules
	Generated COMLIB File Definition
	COMLIB Field Name Generation
	Generating COMLIB Field Information

	Chapter 7: VISION:Results Quick Start
	Flow Diagram
	Utility Execution
	DD Statement Overrides

	Operational Characteristics
	Supported Statement Types
	Converted File Definition
	Member Naming Conventions
	SYSPRINT Listing
	COPYP and COPYL Support

	Installing the VISION:Results Quick Start Routines (Optional)
	Link Edit CA�Librarian Support
	Link Edit CA�Panvalet Support

	Messages
	Return Codes

	Chapter 8: VISION:Inquiry Quick Start
	Flow Diagram
	Utility Execution
	FILEGEN Control Statement
	Coding Rules
	Syntax

	Conversion Rules
	Generated File Definition
	Field Name Generation

	Messages
	Return Codes

	Appendix A: ASL Examples
	Code
	Reports
	Listing

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	N
	P
	R
	S
	T
	V
	W

